Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 10, Issue 2

Issues

Volume 13 (2015)

Binuclear copper complexes with non-steroidal anti-inflammatory drugs as studied by electrospray ionization mass spectrometry

Kaja Kowcun / Magdalena Frańska / Rafał Frański
Published Online: 2012-01-29 | DOI: https://doi.org/10.2478/s11532-011-0139-y

Abstract

The solutions containing one of the copper salts (CuCl2, Cu(ClO4)2, Cu(NO3)2, and CuSO4) and one of the non-steroidal anti-inflammatory drugs (NSAIDs, ibuprofen, ketoprofen or naproxen) were analyzed by electrospray ionization mass spectrometry. Three of the salts, namely CuCl2, Cu(ClO4)2 and Cu(NO3)2, yielded binuclear complexes of drug:metal stoichiometry 1:2. Existence of the complexes of such stoichiometry has not been earlier observed. For copper(II) chloride the complexes (ions of the type [M-HCOOH+Cu2Cl]+ and [M+Cu2Cl]+, M stands for the drug molecule) were formed in the gas phase. When copper(II) perchlorate or copper(II) nitrate was used, the observed binuclear copper complexes (ions of the type [M-H+Cu2(ClO4)2+CH3OH]+, [M-H+Cu2(ClO4)2]+ and [M-H+Cu2(NO3)2+CH3OH]+, [M-H+Cu2(NO3)2]+) were observed at low cone voltage, thus these complexes must have already existed in the solution analysed. Therefore, such complexes may also exist under physiological conditions.

Keywords: Ibuprofen; Ketoprofen; Naproxen; Copper complexes; Electrospray ionization mass spectrometry

  • [1] C.T. Dillon, T.W. Hambley, B.J. Kennedy, P.A. Lay, J.E. Weder, Q. Zhou, Met. Ions Biol. Syst. 41, 253 (2004) Google Scholar

  • [2] J.E. Weder, C.T. Dillon, T.W. Hambley, B.J. Kennedy, P.A. Lay, J.R. Biffin, H.L. Regtop, N.M. Davies, Coord. Chem. Rev. 232, 95 (2002) http://dx.doi.org/10.1016/S0010-8545(02)00086-3CrossrefGoogle Scholar

  • [3] N.E.A. El-Gamela, J. Coord. Chem. 62, 2239 (2009) http://dx.doi.org/10.1080/00958970902822630CrossrefGoogle Scholar

  • [4] A.L. Abuhijleh, Inorg. Chem. Commun. 14, 759 (2011) http://dx.doi.org/10.1016/j.inoche.2011.02.029CrossrefGoogle Scholar

  • [5] N.I. Jakab, Z. Vaskova, J. Moncol, B. Gyurcsik, J. Šima, M. Koman, D. Valigura, Polyhedron 29, 2262 (2010) http://dx.doi.org/10.1016/j.poly.2010.04.030CrossrefGoogle Scholar

  • [6] V. Brumas, B. Brumas, G. Berthon, J. Inorg. Biochem. 57, 191 (1995) http://dx.doi.org/10.1016/0162-0134(94)00024-5CrossrefGoogle Scholar

  • [7] F.T. Greenaway, E. Riviere, J.J. Girerd, X. Labouze, G. Morgant, B. Viossat, J.C. Daran, M.R. Arveiller, N.-H. Dung, J. Inorg. Biochem. 76, 19 (1999) http://dx.doi.org/10.1016/S0162-0134(99)00104-XCrossrefGoogle Scholar

  • [8] D. Kovala-Demertzi, D. Hadjipavlou-Litin, A. Primikiri, M. Staninska, C. Kotoglou, M. A. Demertzis, Chem. Biodivers. 6, 948 (2009) http://dx.doi.org/10.1002/cbdv.200800120CrossrefGoogle Scholar

  • [9] R. Cini, G. Tamasi, S. Defazio, M. B. Hursthouse, J. Inorg. Biochem. 101, 1140 (2007) http://dx.doi.org/10.1016/j.jinorgbio.2007.04.015CrossrefGoogle Scholar

  • [10] S. Roy, R. Banerjee, M. Sarkar, J. Inorg. Biochem. 100, 1320 (2006) http://dx.doi.org/10.1016/j.jinorgbio.2006.03.006CrossrefGoogle Scholar

  • [11] D.K. Saha, S. Padhye, S. Padhye, Metal-Based Drugs, 8, 73 (2001) http://dx.doi.org/10.1155/MBD.2001.73CrossrefGoogle Scholar

  • [12] A. Theodorou, M.A. Demertzis, D. Kovala-Demertzi, E.E. Lioliou, A.A. Pantazaki, D.A. Kyriakidis, BioMetals 12, 167 (1999) http://dx.doi.org/10.1023/A:1009246122577CrossrefGoogle Scholar

  • [13] F. Dimiza, F. Perdih, V. Tangoulis, I. Turel, D.P. Kessissoglou, G. Psomas, J. Inorg. Biochem. 105, 476 (2011) http://dx.doi.org/10.1016/j.jinorgbio.2010.08.013CrossrefGoogle Scholar

  • [14] Y.C. Zhu, S.C. Yan, X.N. Dong, G.F. Zuo, J.G. Wu, R.W. Deng, Chemical Papers 57, 87 (2003) Google Scholar

  • [15] M.Q. Zhang, Y.C. Zhu, J.G. Wu, P. Shi, R.W. Deng, Z.N. Chen, Chemical Papers 55, 202 (2001) Google Scholar

  • [16] A.L. Abuhijleh, J. Khalaf, European J. Med. Chem. 45 3811 (2010) http://dx.doi.org/10.1016/j.ejmech.2010.05.031CrossrefGoogle Scholar

  • [17] S. Yaqub, Ihsan-Ul- Haqb; S. Ali, B. Mirza, F. Ahmed, S. Shahzadi, J. Coord. Chem. 62, 3463 (2009) http://dx.doi.org/10.1080/00958970903100408CrossrefGoogle Scholar

  • [18] A. Trinchero, S. Bonora, A. Tinti, G. Fini, Biopolymers 74, 120, (2004) http://dx.doi.org/10.1002/bip.20057CrossrefGoogle Scholar

  • [19] A.L. Abuhijleh, J. Inorg. Biochem. 55, 255 (1994) http://dx.doi.org/10.1016/0162-0134(94)85010-0CrossrefGoogle Scholar

  • [20] C.R. Gordijo, C.A.S. Barbosa, A.M. Da Costa Ferreira, V.R.L. Constantino, D. De Oloveira Silva, J. Pharm. Sci. 94, 1135 (2005) http://dx.doi.org/10.1002/jps.20336CrossrefGoogle Scholar

  • [21] P.-N. Ahn-Thou, P. Lemoine, B. Viossat, J.-C. Chaumeil, A. Tomas, Z. Kristallogr. NCS 222, 93 (2007) Google Scholar

  • [22] A. Andrade, S.F. Namora, R.G. Woisky, G. Wiezel, R. Najjar, J.A.A. Sertié, D. De Oliveira Silva, J. Inorg. Biochem. 81, 23 (2000) http://dx.doi.org/10.1016/S0162-0134(00)00106-9CrossrefGoogle Scholar

  • [23] J. Beausse, Trends Anal. Chem. 23, 753 (2004) http://dx.doi.org/10.1016/j.trac.2004.08.005CrossrefGoogle Scholar

  • [24] R. Frański, B. Gierczyk, J. Incl. Phenom. Macrocycl. Chem. 62, 339 (2008) http://dx.doi.org/10.1007/s10847-008-9476-7CrossrefGoogle Scholar

  • [25] C. Hao, R.E. March, J. Mass Spectrom. 36, 509 (2001) http://dx.doi.org/10.1002/jms.150CrossrefGoogle Scholar

  • [26] M. Wałęsa-Chorab, V. Patroniak, G. Schroeder, R. Frański, Eur. J. Mass Spectrom. 16, 163 (2010) http://dx.doi.org/10.1255/ejms.1029CrossrefGoogle Scholar

  • [27] D.V. Dearden, Y. Liang, J.B. Nicoll, K.A. Kellersberger, J. Mass Spectrom. 36, 989 (2001) http://dx.doi.org/10.1002/jms.215CrossrefGoogle Scholar

  • [28] R.B. Cole, J. Mass Spectrom. 35, 763 (2000) http://dx.doi.org/10.1002/1096-9888(200007)35:7<763::AID-JMS16>3.0.CO;2-#CrossrefGoogle Scholar

  • [29] R. Frański, Rapid Commun. Mass Spectrom. 25, 672, (2011) http://dx.doi.org/10.1002/rcm.4898CrossrefGoogle Scholar

  • [30] I. Ferrer, E.M. Thurman, Anal. Chem. 77, 3394 (2005) http://dx.doi.org/10.1021/ac0485942CrossrefGoogle Scholar

  • [31] K.B. Borges, A.R.M. De Oliveira, T. Barth, V.A.P. Jabor, M.T. Pupo, P.S. Bonato, Anal. Bioanal. Chem. 399, 915 (2011) http://dx.doi.org/10.1007/s00216-010-4329-9CrossrefGoogle Scholar

  • [32] H. Harada, T. Endo, Y. Momose, H. Kusama, Rapid Commun. Mass Spectrom. 23, 564 (2009) http://dx.doi.org/10.1002/rcm.3912CrossrefGoogle Scholar

About the article

Published Online: 2012-01-29

Published in Print: 2012-04-01


Citation Information: Open Chemistry, Volume 10, Issue 2, Pages 320–326, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0139-y.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nahid Shahabadi and Farshad Shiri
Nucleosides, Nucleotides and Nucleic Acids, 2017, Volume 36, Number 2, Page 83
[2]
Nahid Shahabadi, Mehdi Pourfoulad, and Avat (Arman) Taherpour
Journal of Coordination Chemistry, 2017, Volume 70, Number 2, Page 201

Comments (0)

Please log in or register to comment.
Log in