Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
See all formats and pricing
More options …
Volume 10, Issue 2


Volume 13 (2015)

The solubility of Ca(OH)2 in extremely concentrated NaOH solutions at 25°C

Attila Pallagi / Ágost Tasi / Attila Gácsi / Miklós Csáti / István Pálinkó / Gábor Peintler / Pál Sipos
Published Online: 2012-01-29 | DOI: https://doi.org/10.2478/s11532-011-0145-0


The solubility of Ca(OH)2 in aqueous NaOH solutions up to 12.50 M at 25°C has been determined. The solubility data obtained for NaOH concentrations lower than 3 M was compared with those published in the literature. The solubility of Ca(OH)2 steadily decreases with the increasing NaOH concentration. The solubility data obtained at a constant ionic strength (I = 1 M Na(Cl,OH)) enabled the determination of the conditional solubility product of Ca(OH)2(s) (lgLCa(OH)2 = − 4.10 ± 0.02). Formation of the hydroxo complex CaOH+(aq) was invoked to describe the variation of [Ca2+]T with [OH−]T. Its conditional stability constant was found to be lgKCaOH+ = 0.97 ± 0.02. The experimental protocol employed was proven to be suitable for accurate solubility determinations in rapidly equilibrating systems comprising of highly concentrated, alkaline solutions and containing analytes in the ppm range.

Keywords: Solubility apparatus; Solubility; ICP AES; Ca(OH)2; Concentrated electrolytes; Aqueous solutions

  • [1] S.P. Rosenberg, J.D. Wilson, A.C. Heath, Light Metals 19 (2001) Google Scholar

  • [2] P. Sipos, G.T. Hefter, P.M. May, Analyst 125, 955 (2000) http://dx.doi.org/10.1039/a910335jCrossrefGoogle Scholar

  • [3] J. Duchesne, E.J. Reardon, Cement Concr. Res. 25, 1043 (1995) http://dx.doi.org/10.1016/0008-8846(95)00099-XCrossrefGoogle Scholar

  • [4] N. Fratini, Ann. Chim. Appl. 39, 616 (1949) Google Scholar

  • [5] S. Diamond, Il Cemento 74, 149 (1977) (In Italian) Google Scholar

  • [6] T. Yuan, J. Wang, Z. Li, Fluid Phase Equil. 297, 129 (2010) http://dx.doi.org/10.1016/j.fluid.2010.06.012CrossrefGoogle Scholar

  • [7] H. Konno, Y. Nanri, M. Kitamura, Powder Technol. 123, 33 (2002) http://dx.doi.org/10.1016/S0032-5910(01)00424-7CrossrefGoogle Scholar

  • [8] P. Sipos, G.T. Hefter, P.M. May, Rev. Sci. Inst. 70, 1481 (1999) http://dx.doi.org/10.1063/1.1149610CrossrefGoogle Scholar

  • [9] W.J. Mader, L.T. Grady, in A. Weissberger, B.W. Rossiter (Eds.), Physical Methods of Chemistry. Part V: Determination of Thermodynamic and Surface Properties (Wiley, New York, 1971) Google Scholar

  • [10] Q. Huang, O. Chmaissem, J.J. Capponi, C. Chaillout, M. Marezio, J.L. Tholence, A. Santoro, Physica C: Superconductivity 227, 1 (1994) http://dx.doi.org/10.1016/0921-4534(94)90349-2CrossrefGoogle Scholar

  • [11] B.C. Nelson, P.C. Uden, G.F. Rockwell, K.M. Gorski, Z.G. Aguilera, J. Chrom. A 771, 285 (1997) http://dx.doi.org/10.1016/S0021-9673(97)00109-XCrossrefGoogle Scholar

  • [12] A. Lakatos, K. Schrantz, E.A. Enyedi, A. Dombi, Mennyiségi analitikai gyakorlatok, (Szegedi Egyetemi Kiadó, Szeged, Hungary, 2008) (In Hungarian) Google Scholar

  • [13] P. Sipos, M. Schibeci, G. Peintler, P.M. May, G. Hefter, Dalton Trans. 1858 (2006) Google Scholar

  • [14] C. Christrov, N. Moller, Geochim. Cosmochim. Acta 68, 3717 (2004) http://dx.doi.org/10.1016/j.gca.2004.03.006CrossrefGoogle Scholar

  • [15] R.A. Smith, A.E. Martell, Critical Stability Constants (Plenum Press, New York, 1976) Google Scholar

  • [16] C.F. Baes, R.E. Mesmer, The Hydrolysis of Cations (Wiley Interscience, New York, 1976) Google Scholar

  • [17] G. Peintler ZITA, A Comprehensive Program Package for Fitting Parameters of Chemical Reaction Mechanisms, Versions 2.1–5.0 (Department of Physical Chemistry, University of Szeged, Szeged, Hungary, 1989–2001). Google Scholar

About the article

Published Online: 2012-01-29

Published in Print: 2012-04-01

Citation Information: Open Chemistry, Volume 10, Issue 2, Pages 332–337, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0145-0.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Graciela Ponce-Antón, Luis Ortega, Maria Zuluaga, Ainhoa Alonso-Olazabal, and Jose Solaun
Minerals, 2018, Volume 8, Number 8, Page 326
Reza Salimi, James Vaughan, and Hong Peng
Industrial & Engineering Chemistry Research, 2014, Volume 53, Number 44, Page 17499
Attila Pallagi, Éva G. Bajnóczi, Sophie E. Canton, Trudy Bolin, Gábor Peintler, Bence Kutus, Zoltán Kele, István Pálinkó, and Pál Sipos
Environmental Science & Technology, 2014, Volume 48, Number 12, Page 6604

Comments (0)

Please log in or register to comment.
Log in