Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 10, Issue 2

Issues

Volume 13 (2015)

A review on the synthesis of TiO2 nanoparticles by solution route

Shipra Gupta / Manoj Tripathi
Published Online: 2012-01-29 | DOI: https://doi.org/10.2478/s11532-011-0155-y

Abstract

TiO2 can be prepared in the form of powder, crystals, or thin films. Liquid-phase processing is one of the most convenient and utilized methods of synthesis. It has the advantage of allowing control over the stoichiometry, production of homogeneous materials, formation of complex shapes, and preparation of composite materials. However, there may be some disadvantages such as expensive precursors, long processing times, and the presence of carbon as an impurity. In comparison, the physical production techniques, although environment friendly, are limited by the size of the produced samples which is not sufficient for a large-scale production. The most commonly used solution routes in the synthesis of TiO2 are reviewed.

Keywords: Synthesis; Nanoparticles; TiO2

  • [1] A. Fujishima, K. Honda, Nat. 238, 37 (1972) http://dx.doi.org/10.1038/238037a0CrossrefGoogle Scholar

  • [2] M. Gratzel, Nat. 414, 338 (2001) http://dx.doi.org/10.1038/35104607CrossrefGoogle Scholar

  • [3] A. Hagfeldt, M. Gratzel, Chem. Rev. 95, 49 (1995) http://dx.doi.org/10.1021/cr00033a003CrossrefGoogle Scholar

  • [4] A.L. Linsebigler, G. Lu, J.T. Jr. Yates, Chem. Rev. 95, 735 (1995) http://dx.doi.org/10.1021/cr00035a013CrossrefGoogle Scholar

  • [5] A. Millis, S.J. Le Hunte, J. Photochem. Photobiol. A 108, 1 (1997) http://dx.doi.org/10.1016/S1010-6030(97)00118-4CrossrefGoogle Scholar

  • [6] V.K. Gupta, R. Jain, S. Agarwal, M. Shrivastava, Colloids and Surfaces A: Physicochem. Eng. Aspects 378, 22 (2011) http://dx.doi.org/10.1016/j.colsurfa.2011.01.046CrossrefGoogle Scholar

  • [7] V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Mater. Sci. and Eng. C 31, 1062 (2011) http://dx.doi.org/10.1016/j.msec.2011.03.006CrossrefGoogle Scholar

  • [8] G. Pfaff, P. Reynders, Chem. Rev. 99, 1963 (1999) http://dx.doi.org/10.1021/cr970075uCrossrefGoogle Scholar

  • [9] A. Salvador, M.C. Pascual-Marti, J.R. Adell, A. Requeni, G. March, J. Pharm. Biomed. Anal. 22, 301 (2000) http://dx.doi.org/10.1016/S0731-7085(99)00286-1CrossrefGoogle Scholar

  • [10] M.D. Newman, M. Stotland, J.I. Ellis, J. American Acad. Derm. 61, 685 (2009) http://dx.doi.org/10.1016/j.jaad.2009.02.051CrossrefGoogle Scholar

  • [11] R. Zallen, M.P. Moret, Solid State Commun. 137, 154 (2006) http://dx.doi.org/10.1016/j.ssc.2005.10.024CrossrefGoogle Scholar

  • [12] J.H. Braun, A. Baidins, R.E. Marganski, Prog. Org. Coat. 20, 105 (1992) http://dx.doi.org/10.1016/0033-0655(92)80001-DCrossrefGoogle Scholar

  • [13] M.A. Behnajady, H. Eskandarloo, N. Modirshahla, M. Shokri, Desalination 278, 10 (2011) http://dx.doi.org/10.1016/j.desal.2011.04.019CrossrefGoogle Scholar

  • [14] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005) http://dx.doi.org/10.1021/cr030063aCrossrefGoogle Scholar

  • [15] D. Ganguli, Bull. Mater. Sci. 15, 421 (1992) http://dx.doi.org/10.1007/BF02745291CrossrefGoogle Scholar

  • [16] Y. Li, T. White, S.H. Lim, Rev. Adv. Mater. Sci. 5, 211 (2003) Google Scholar

  • [17] G. Colón, M.C. Hidalgo, J.A. Navío, Catal. Today 76, 91 (2002) http://dx.doi.org/10.1016/S0920-5861(02)00207-9CrossrefGoogle Scholar

  • [18] N. Uekawa, J. Kajiwara, K. Kakegawa, Y. Sasaki, J. Colloid Interface Sci. 250, 285 (2002) http://dx.doi.org/10.1006/jcis.2002.8371CrossrefGoogle Scholar

  • [19] A.J. Maira, K.L. Yeung, J. Soria, J.M. Coronado, C. Belver, C.Y. Lee, V. Augugliaro, Appl. Catal. B 29, 327 (2001) http://dx.doi.org/10.1016/S0926-3373(00)00211-3CrossrefGoogle Scholar

  • [20] B. Li, X. Wang, M. Yan, L. Li, Mater. Chem. Phys. 78, 184 (2003) http://dx.doi.org/10.1016/S0254-0584(02)00226-2CrossrefGoogle Scholar

  • [21] H. Parala, A. Devi, R. Bhakta, R.A. Fischer, J. Mater. Chem. 12, 1625 (2002) http://dx.doi.org/10.1039/b202767dCrossrefGoogle Scholar

  • [22] K.N.P. Kumar, K. Keizer, A.J. Burggraaf, J. Mater. Chem. 3, 917 (1993) http://dx.doi.org/10.1039/jm9930300917CrossrefGoogle Scholar

  • [23] C.-H. Chang, R. Gopalan, Y.S. Lin, J. Membr. Sci. 91, 27 (1994) http://dx.doi.org/10.1016/0376-7388(94)00041-7CrossrefGoogle Scholar

  • [24] U. Trudinger, G. Muller, K.K. Unger, J. Chromatogr. 535, 111 (1990) http://dx.doi.org/10.1016/S0021-9673(01)88938-XCrossrefGoogle Scholar

  • [25] S. Matsuda, A. Kato, Appl. Catal. 8, 149 (1983) http://dx.doi.org/10.1016/0166-9834(83)80076-1CrossrefGoogle Scholar

  • [26] P.D.L. Mercera, J.G. Van Ommen, E.B.M. Doesburg, A.J. Burggraaf, J.H. Ross, Appl. Catal. 71, 363 (1991) http://dx.doi.org/10.1016/0166-9834(91)85092-ACrossrefGoogle Scholar

  • [27] M. Schneider, A. Baiker, Catal. Today 35, 339 (1997) http://dx.doi.org/10.1016/S0920-5861(96)00164-2CrossrefGoogle Scholar

  • [28] R. Cai, K. Hashimoto, Y. Kubota, A. Fujishima, Chem. Lett. 427 (1992) CrossrefGoogle Scholar

  • [29] S. Sitkiewitz, A. Heller, New J. Chem. 20, 233 (1996) Google Scholar

  • [30] N.B. Jackson, C.M. Wang, Z. Luo, J. Schwitzgebel, J.G. Ekerdt, J.R. Brock, A. Heller, J. Electrochem. Soc. 138, 3660 (1991) http://dx.doi.org/10.1149/1.2085476CrossrefGoogle Scholar

  • [31] Y. Paz, Z. Luo, L. Rabenberg, A. Heller, Journal of Mater. Res. 10, 2842 (1995) http://dx.doi.org/10.1557/JMR.1995.2842CrossrefGoogle Scholar

  • [32] T. Watanabe, A. Kitamura, E. Kojima, C. Nakayama, K. Hashimoto, A. Fujishima, In: D. Oilis, H. EI-Akabi (Eds.), Photocatalytic Purification and Treatment of Water and Air (Elsevier, New York, 1993) 747 Google Scholar

  • [33] I. Sopyan, S. Murasawa, K. Hashimoto, A. Fujishima, Chem. Lett. 23, 723 (1994) http://dx.doi.org/10.1246/cl.1994.723CrossrefGoogle Scholar

  • [34] N. Negishi, T. Iyoda, K. Hashimoto, A. Fujishima, Chem. Lett. 24, 841 (1995) http://dx.doi.org/10.1246/cl.1995.841CrossrefGoogle Scholar

  • [35] J.L.H. Chau, H.-W. Liu, W. -F. Su, J. Phys. Chem. Sol. 70, 1385 (2009) http://dx.doi.org/10.1016/j.jpcs.2009.08.011CrossrefGoogle Scholar

  • [36] V. Loryuenyong, K. Angamnuaysiri, J. Sukcharoenpong, A. Suwannasri, Ceramics Inter. 2011 (In press) Google Scholar

  • [37] J.C.S. Wu, C.-H. Chen, J. Photochem. Photobio. A: Chem. 163, 509 (2004) http://dx.doi.org/10.1016/j.jphotochem.2004.02.007CrossrefGoogle Scholar

  • [38] K. Bhattacharyya, S. Varma, A.K. Tripathi, S.R. Bharadwaj, A.K. Tyagi, J. Phys. Chem. C 112, 19102 (2008) CrossrefGoogle Scholar

  • [39] N.Y. Al-Salim, S. Abagshaw, A. Bittar, T. Kemmett, A.J. McQuilla, A.M. Mills, J. Mater. Chem. 10, 2358 (2000) http://dx.doi.org/10.1039/b004384mCrossrefGoogle Scholar

  • [40] I-H. Tseng, W-C. Chang, J.C.S. Wu, Appl. Catal. B: Environ. 37, 37 (2003) http://dx.doi.org/10.1016/S0926-3373(01)00322-8CrossrefGoogle Scholar

  • [41] I-H. Tseng, J.C.S. Wu, H.-Y. Chou, J. Catal. 221, 432 (2004) http://dx.doi.org/10.1016/j.jcat.2003.09.002CrossrefGoogle Scholar

  • [42] R. Phani, S. Santucci, Mater. Lett. 50, 240 (2001) http://dx.doi.org/10.1016/S0167-577X(01)00232-4CrossrefGoogle Scholar

  • [43] J.A. Navío, G. Colón, M. Macías, C. Real, M.I. Litter, Appl. Catal. A: Gen. 177, 111 (1999) http://dx.doi.org/10.1016/S0926-860X(98)00255-5CrossrefGoogle Scholar

  • [44] Z.-H. Yuan, J.-H. Jia, L.-D. Zhang, Mater. Chem. Phys. 73, 323 (2002) http://dx.doi.org/10.1016/S0254-0584(01)00373-XCrossrefGoogle Scholar

  • [45] R.S. Sonawane, B.B. Kale, M.K. Dongare, Mater. Chem. and Phys. 85, 52 (2004) http://dx.doi.org/10.1016/j.matchemphys.2003.12.007CrossrefGoogle Scholar

  • [46] J. Wang, S. Una, K.J. Klabunde, Appl. Catal. B: Environ. 48, 151 (2004) http://dx.doi.org/10.1016/j.apcatb.2003.10.006CrossrefGoogle Scholar

  • [47] H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, M. Anpo, J. Photochem. Photobiol. A: Chem. 148, 257 (2002) http://dx.doi.org/10.1016/S1010-6030(02)00051-5CrossrefGoogle Scholar

  • [48] R. Arroyo, G. Córdoba, J. Padilla, V.H. Lara, Mater. Lett. 54, 397 (2002) http://dx.doi.org/10.1016/S0167-577X(01)00600-0CrossrefGoogle Scholar

  • [49] T. López, R. Gómez, G. Pecci, P. Reyes, X. Bokhimi, O. Novaro, Mater. Lett. 40, 59 (1999) http://dx.doi.org/10.1016/S0167-577X(99)00049-XCrossrefGoogle Scholar

  • [50] A.D. Paola, E. García-López, S. Ikeda, G. Marcì, B. Ohtani, L. Palmisano, Catal. Today 75, 87 (2002) http://dx.doi.org/10.1016/S0920-5861(02)00048-2CrossrefGoogle Scholar

  • [51] J. Yu, J.C. Yu, B. Cheng, X. Zhao, J. Sol-Gel Sci. and Tech. 24, 39 (2002) http://dx.doi.org/10.1023/A:1015109515825CrossrefGoogle Scholar

  • [52] F.B. Li, X.Z. Li, Appl. Catal. A: Gen. 228, 15 (2002) http://dx.doi.org/10.1016/S0926-860X(01)00953-XCrossrefGoogle Scholar

  • [53] N.B. Narayanan, Y. Zahira, R. Ramakrishnan, Cent. Eur. J. Chem. 8, 182 (2009) Google Scholar

  • [54] F.B. Li, X.Z. Li, M.F. Hou, Appl. Catal. B: Environ. 48, 185 (2004) http://dx.doi.org/10.1016/j.apcatb.2003.10.003CrossrefGoogle Scholar

  • [55] H.E. Chao, Y.U. Yun, H.U. Xingfang, A. Larbot, J. Eur. Ceram. Soc. 23, 1457 (2003) http://dx.doi.org/10.1016/S0955-2219(02)00356-4CrossrefGoogle Scholar

  • [56] M. Stir, T. Traykova, R. Nicula, E. Burkel, C. Baehtz, M. Knapp, C. Lathe, Nucl. Instrum. Meth. Phys. Res. B 199, 59 (2003) http://dx.doi.org/10.1016/S0168-583X(02)01572-0CrossrefGoogle Scholar

  • [57] P. Yang, C. Lu, N. Hua, Y. Du, Mater. Lett. 57, 794 (2002) http://dx.doi.org/10.1016/S0167-577X(02)00875-3CrossrefGoogle Scholar

  • [58] C. Wang, C. Bottcher, D.W. Bahnemann, J.K. Dohrmann, J. Mater. Chem. 13, 2322 (2003) http://dx.doi.org/10.1039/b303716aCrossrefGoogle Scholar

  • [59] R. Subasri, M. Tripathi, K. Murugan, J. Revathi, G.V.N. Rao, T.N. Rao, Mater. Chem. Phys. 124, 63 (2010) http://dx.doi.org/10.1016/j.matchemphys.2010.08.013CrossrefGoogle Scholar

  • [60] J. Wang, W. Zhu, Y. Zhang, S. Liu, J. Phys. Chem. C 111, 1010 (2007) http://dx.doi.org/10.1021/jp066156oCrossrefGoogle Scholar

  • [61] C.-C Pan, J.C.S. Wu, Mater. Chem. Phys. 100, 102 (2006) http://dx.doi.org/10.1016/j.matchemphys.2005.12.013CrossrefGoogle Scholar

  • [62] S.C. Moon, H. Mametsuka, E. Suzuki, Y. Nakahara, Catal. Today 45, 79 (1998) http://dx.doi.org/10.1016/S0920-5861(98)00252-1CrossrefGoogle Scholar

  • [63] X. Song, L. Gao, J. Phys. Chem. C 111, 8180 (2007) http://dx.doi.org/10.1021/jp071142jCrossrefGoogle Scholar

  • [64] P.D. Cozzoli, E. Fanizza, M.L. Curri, D. Laub, A. Agostiano, Chem. Commun. 942 (2005) CrossrefGoogle Scholar

  • [65] P.D. Cozzoli, A. Kornowski, H. Weller, J. Am. Chem. Soc. 125, 14539 (2003) http://dx.doi.org/10.1021/ja036505hCrossrefGoogle Scholar

  • [66] P.D. Cozzoli, E. Fanizza, R. Comparelli, M. L. Curri, A. Agostiano, D. Laub, J. Phys. Chem. B 108, 9623 (2004) http://dx.doi.org/10.1021/jp0379751CrossrefGoogle Scholar

  • [67] P.D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, D. Laub, J. Am. Chem. Soc. 126, 3868 (2004) http://dx.doi.org/10.1021/ja0395846CrossrefGoogle Scholar

  • [68] P.D. Cozzoli, M.L. Curri, A. Agostiano, Chem. Commun. 3186 (2005) CrossrefGoogle Scholar

  • [69] N.S. Venkataramanan, K. Matsui, H. Kawanami, Y. Ikushima, Green Chem. 9, 18 (2007) http://dx.doi.org/10.1039/b609887hCrossrefGoogle Scholar

  • [70] S. Liu, J. He, J. Am. Ceram. Soc. 88, 3513 (2005) http://dx.doi.org/10.1111/j.1551-2916.2005.00615.xCrossrefGoogle Scholar

  • [71] Y. Gu, X. Liu, T. Niu, J. Huang, Mater. Research Bulletin 45, 536 (2010) http://dx.doi.org/10.1016/j.materresbull.2010.02.009CrossrefGoogle Scholar

  • [72] D. Zhang, L. Qi, Chem. Commun. 21, 2735 (2005) http://dx.doi.org/10.1039/b501933hCrossrefGoogle Scholar

  • [73] V. Chhabra, V. Pillai, B.K. Mishra, A. Morrone, D.O. Shah, Langmuir 11, 3307 (1995) http://dx.doi.org/10.1021/la00009a007CrossrefGoogle Scholar

  • [74] R. Leung, M.J. Hou, D.O. Shah, In: D.T. Wasan, M.E. Ginn, D.O. Shah (Eds.), Surfactant Sci. Series Vol. 28 (Marcel Dekker, New York, 1988) 315. Google Scholar

  • [75] H. Gutmann, A.S. Kertes, J. Colloid Interface Sci. 51, 406 (1973) http://dx.doi.org/10.1016/0021-9797(75)90136-8CrossrefGoogle Scholar

  • [76] P. Pieranski, Phys. Rev. Lett. 45, 569 (1980) http://dx.doi.org/10.1103/PhysRevLett.45.569CrossrefGoogle Scholar

  • [77] O.D. Velev, K. Furusawa, K. Nagayama, Langmuir 12, 2374 (1996) http://dx.doi.org/10.1021/la9506786CrossrefGoogle Scholar

  • [78] M. Andersson, L. Österlund, S. Ljungström, A. Palmqvist, J. Phys. Chem. B 106, 10674 (2002) http://dx.doi.org/10.1021/jp025715yCrossrefGoogle Scholar

  • [79] M.P. Pileni, Langmuir 13, 3266 (1997) http://dx.doi.org/10.1021/la960319qCrossrefGoogle Scholar

  • [80] R. Zhang, L. Gao, Mater. Res. Bull. 37, 1659 (2002) http://dx.doi.org/10.1016/S0025-5408(02)00817-6CrossrefGoogle Scholar

  • [81] K.T. Lim, H.S. Hwang, W. Ryoo, K.P. Johnson, Langmuir 20, 2466 (2004) http://dx.doi.org/10.1021/la035646uCrossrefGoogle Scholar

  • [82] V. Pillai, P. Kumar, M.J. Huo, P. Ayyub, D.O. Shah, Adv. Colloid Interface Sci. 55, 241 (1995) http://dx.doi.org/10.1016/0001-8686(94)00227-4CrossrefGoogle Scholar

  • [83] K. Kandori, K. Konno, A. Kitahara, J. Colloid Interface Sci. 122, 78 (1988) http://dx.doi.org/10.1016/0021-9797(88)90289-5CrossrefGoogle Scholar

  • [84] V. Chhabra, P. Ayyub, S. Chattopadhay, A.N. Maitra, Mater. Lett. 26, 21 (1996) http://dx.doi.org/10.1016/0167-577X(95)00200-6CrossrefGoogle Scholar

  • [85] F.A. Deorsola, D. Vallauri, Powd. Tech. 190, 304 (2009) http://dx.doi.org/10.1016/j.powtec.2008.08.009CrossrefGoogle Scholar

  • [86] M. Wu, J. Long, A. Huang, Y. Luo, Langmuir 15, 8822 (1999) http://dx.doi.org/10.1021/la990514fCrossrefGoogle Scholar

  • [87] X. Gao, J. Li, W. Gao, Coll. Journal 70, 392 (2008) http://dx.doi.org/10.1134/S1061933X08030198CrossrefGoogle Scholar

  • [88] C.E. Zubieta, J.F.A.S. Martínez, C.V. Luengo, P.C. Schulz, Powd. Tech. 212, 410 (2011) http://dx.doi.org/10.1016/j.powtec.2011.06.017CrossrefGoogle Scholar

  • [89] Y. Cong, L. Xiao, J. Zhang, F. Chen, M. Anpo, Res. Chem. Intermed. 32, 717 (2006) http://dx.doi.org/10.1163/156856706778606525CrossrefGoogle Scholar

  • [90] C. Adán, A. Bahamonde, M. Fernández-García, A. Martínez-Arias, App. Catal. B, 72, 11 (2007) http://dx.doi.org/10.1016/j.apcatb.2006.09.018CrossrefGoogle Scholar

  • [91] A. Zielińska, E. Kowalska, J.W. Sobczak, I. Łącka, M. Gazda, B. Ohtani, J. Hupka, A. Zaleska, Sep. Purif. Tech. 72, 309 (2010) http://dx.doi.org/10.1016/j.seppur.2010.03.002CrossrefGoogle Scholar

  • [92] J.A. Schwarz, Chem. Rev. 95, 477 (1995) http://dx.doi.org/10.1021/cr00035a002CrossrefGoogle Scholar

  • [93] O. Carp, C.L. Huisman, A. Reller, Prog. in Solid State Chem. 32, 33 (2004) http://dx.doi.org/10.1016/j.progsolidstchem.2004.08.001CrossrefGoogle Scholar

  • [94] S.C. Davis, K.J. Klabunde, Chem. Rev. 82, 153 (1982) http://dx.doi.org/10.1021/cr00048a002CrossrefGoogle Scholar

  • [95] S. Cheng, S.-Y. Cheng, J. Catal. 122, 1 (1990) http://dx.doi.org/10.1016/0021-9517(90)90256-JCrossrefGoogle Scholar

  • [96] H.E. Namin, H. Hashemipour, M. Ranjbar, Inter. J. Mod. Phys. B 22, 3210 (2008) http://dx.doi.org/10.1142/S0217979208048127CrossrefGoogle Scholar

  • [97] Y. Shchipunova, I. Postnova, Coll. Surf. B: Biointer. 74, 172 (2009) http://dx.doi.org/10.1016/j.colsurfb.2009.07.023CrossrefGoogle Scholar

  • [98] X. You, F. Chen, J. Zhang, M. Anpo, Catal. Lett. 102, 3 (2005) http://dx.doi.org/10.1007/s10562-005-5863-5CrossrefGoogle Scholar

  • [99] J.-M. Wu, B. Qi, J. Phys. Chem. C 111, 666 (2007) http://dx.doi.org/10.1021/jp065630nCrossrefGoogle Scholar

  • [100] T. Sato, Y. Aita, M. Komatsu, S. Yin, J. Mater. Sci. 41, 1433 (2006) http://dx.doi.org/10.1007/s10853-006-7445-3CrossrefGoogle Scholar

  • [101] W.L. Kostedt, A.A. Ismail, D.W. Mazyck, Ind. Eng. Chem. Res. 47, 1483 (2008) http://dx.doi.org/10.1021/ie071255pCrossrefGoogle Scholar

  • [102] F.P. Daly, H. Ando, J.L. Schmitt, E.A. Sturm, J. Catal. 108, 401 (1987) http://dx.doi.org/10.1016/0021-9517(87)90188-6CrossrefGoogle Scholar

  • [103] J.-C. Wu, C.-S. Chung, C.-L. Ay, I. Wang, J. Catal. 87, 98 (1984) http://dx.doi.org/10.1016/0021-9517(84)90172-6CrossrefGoogle Scholar

  • [104] W.J. Tuan, H.H. Wu, T.J. Yang, J. Mater. Sci. 30, 855 (1995) http://dx.doi.org/10.1007/BF01178417CrossrefGoogle Scholar

  • [105] P.-H. Xiang, X.-L. Dong, C.-D. Feng, Y.-L. Wang, J. Am. Ceram. Soc. 86, 1631 (2003) http://dx.doi.org/10.1111/j.1151-2916.2003.tb03531.xCrossrefGoogle Scholar

  • [106] P.-H. Xiang, N. Zhong, X.-L. Dong, R.-H. Liang, H. Yang, C.-D. Feng, Mater. Lett. 58, 2675 (2004) http://dx.doi.org/10.1016/j.matlet.2004.04.004CrossrefGoogle Scholar

  • [107] W. Wang, Y. Yang, H. Luo, T. Hu, F. Wang, W. Liu, J. Alloys Comp. 509, 3430 (2011) http://dx.doi.org/10.1016/j.jallcom.2010.12.119CrossrefGoogle Scholar

  • [108] V. Tyrpekla, J.P. Vejpravova, A.G. Roca, N. Murafa, L. Szatmary, D. Niznansky, Appl. Surf. Sci. 257, 4844 (2011) http://dx.doi.org/10.1016/j.apsusc.2010.12.110CrossrefGoogle Scholar

  • [109] S. SŌmiya, R. Roy, Bull. Mater. Sci. 23, 453 (2000) http://dx.doi.org/10.1007/BF02903883CrossrefGoogle Scholar

  • [110] K. Byrappa, T. Adschiri, Prog. Crys. Growth Charac. Mater. 53, 117 (2007) http://dx.doi.org/10.1016/j.pcrysgrow.2007.04.001CrossrefGoogle Scholar

  • [111] X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007) http://dx.doi.org/10.1021/cr0500535CrossrefGoogle Scholar

  • [112] K. Byrappa, K.M. Lokanatha Rai, M. Yoshimura, Env. Tech. 21, 1085 (2000) http://dx.doi.org/10.1080/09593330.2000.9618994CrossrefGoogle Scholar

  • [113] Y. Qian, Q. Chen, Z. Chen, C. Fan, G. Zhou, J. Mater. Chem. 3, 203 (1993) http://dx.doi.org/10.1039/jm9930300203CrossrefGoogle Scholar

  • [114] D.S. Seo, J.M. Lee, H. Kim, J. Cryst. Growth 229, 428 (2001) http://dx.doi.org/10.1016/S0022-0248(01)01196-4CrossrefGoogle Scholar

  • [115] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160 (1998) http://dx.doi.org/10.1021/la9713816CrossrefGoogle Scholar

  • [116] X.M. Sun, Y.D. Li, Chem. Eur. J. 9, 2229 (2003) http://dx.doi.org/10.1002/chem.200204394CrossrefGoogle Scholar

  • [117] G.-S. Kim, Y.-S. Kim, H.-K. Seo, H.-S. Shin, Korean J. Chem. Eng. 23, 1037 (2006) http://dx.doi.org/10.1007/s11814-006-0027-xCrossrefGoogle Scholar

  • [118] J. Yan, S. Feng, H. Lu, J. Wang, J. Zheng, J. Zhao, L. Li, Z. Zhu, Mater. Sci. and Engineering B 172, 114 (2010) http://dx.doi.org/10.1016/j.mseb.2010.04.032CrossrefGoogle Scholar

  • [119] Y. Xu, X. Fang, J. Xiong, Z. Zhang, Mater. Research Bulletin 45, 799 (2010) http://dx.doi.org/10.1016/j.materresbull.2010.03.016CrossrefGoogle Scholar

  • [120] Q. Zhao, J. Chu, T. Jiang, H. Yin, Korean J. Chem. Eng. 25, 1008 (2008) http://dx.doi.org/10.1007/s11814-008-0163-6CrossrefGoogle Scholar

  • [121] Z. Wang, T. Jiang, Y. Du, K. Chen, H. Yin, Mater. Lett. 60, 2493 (2006) http://dx.doi.org/10.1016/j.matlet.2006.01.040CrossrefGoogle Scholar

  • [122] S. Pavasupree, J. Jitputti, S. Ngamsinlapasathian, S. Yoshikawa, Mater. Res. Bulletin 43, 149 (2008) http://dx.doi.org/10.1016/j.materresbull.2007.02.028CrossrefGoogle Scholar

  • [123] J.-M. Wu, X.-M. Song, M. Yan, J. Hazard. Mater. 194, 338 (2011) http://dx.doi.org/10.1016/j.jhazmat.2011.07.110CrossrefGoogle Scholar

  • [124] S. Wang, S. Zhou, J. Hazard. Mater. 185, 77 (2011) http://dx.doi.org/10.1016/j.jhazmat.2010.08.125CrossrefGoogle Scholar

  • [125] X. Zhang, Y. Sun, X. Cui, Z. Jiang, Inter. J. Hyd. Ener. (in press) Google Scholar

  • [126] X.Y. Zhang, H.P. Li, X.L. Cui, Y. Lin, J. Mater. Chem. 20, 2801 (2010) http://dx.doi.org/10.1039/b917240hCrossrefGoogle Scholar

  • [127] P. Zhang, B. Liu, S. Yin, Y. Wang, V. Petrykin, M. Kakihana, T. Sato, Mater. Chem. Phys. 116, 269 (2009) http://dx.doi.org/10.1016/j.matchemphys.2009.03.025CrossrefGoogle Scholar

  • [128] Y. Qian, Advced Mat. 11, 1101 (1999) http://dx.doi.org/10.1002/(SICI)1521-4095(199909)11:13<1101::AID-ADMA1101>3.0.CO;2-OCrossrefGoogle Scholar

  • [129] C. Wang, Z.-X. Deng, Y. Li, Inorg. Chem. 40, 5210 (2001) http://dx.doi.org/10.1021/ic0101679CrossrefGoogle Scholar

  • [130] Z. Zhu, L.Y. Tsung, M. Tomkiewicz, J. Phys. Chem. 99, 15945 (1995) http://dx.doi.org/10.1021/j100043a037CrossrefGoogle Scholar

  • [131] S. Yin, Y. Fujishiro, J. Wu, M. Aki, T. Sato, J. Mater. Processing Tech. 137, 45 (2003) http://dx.doi.org/10.1016/S0924-0136(02)01065-8CrossrefGoogle Scholar

  • [132] M. Kang, J. Mol. Catal. A: Chem. 197, 173 (2003) http://dx.doi.org/10.1016/S1381-1169(02)00586-1CrossrefGoogle Scholar

  • [133] C.-S. Kim, B.K. Moon, J.-H. Park, S.T. Chung, S.-M. Son, J. Cryst. Growth 254, 405 (2003) http://dx.doi.org/10.1016/S0022-0248(03)01185-0CrossrefGoogle Scholar

  • [134] D. Chen, R. Xu, J. Mater. Chem. 8, 965 (1998) http://dx.doi.org/10.1039/a707546dCrossrefGoogle Scholar

  • [135] W.S. Nam, G.Y. Han, Korean J. Chem. Eng. 20, 1149 (2003) http://dx.doi.org/10.1007/BF02706953CrossrefGoogle Scholar

  • [136] S.-H. Lee, M. Kang, S.M. Cho, G.Y. Han, B.-W. Kim, K.J. Yoon, C.-H. Chung, J. Photochem. Photobiol. A: Chem. 146, 121 (2001) http://dx.doi.org/10.1016/S1010-6030(01)00553-6CrossrefGoogle Scholar

  • [137] W. Kongsuebchart, P. Praserthdam, J. Panpranot, A. Sirisuk, P. Supphasrirongjaroen, C. Satayaprasert J. Crys. Growth 297, 234 (2006) http://dx.doi.org/10.1016/j.jcrysgro.2006.09.018CrossrefGoogle Scholar

  • [138] S. Kaewgun, C.A. Nolph, B.I. Lee, L.-Q. Wang, Mater. Chem. Phys. 114, 439 (2009) http://dx.doi.org/10.1016/j.matchemphys.2008.09.072CrossrefGoogle Scholar

  • [139] Q.-Q. Cheng, Y. Cao, L. Yang, P.-P. Zhang, K. Wang, H.-J. Wang, Mater. Research Bulletin 46, 372 (2011) http://dx.doi.org/10.1016/j.materresbull.2010.12.013CrossrefGoogle Scholar

  • [140] X. Shen, J. Zhang, B. Tian, J. Hazard. Mater. 192, 651 (2011) http://dx.doi.org/10.1016/j.jhazmat.2011.05.066CrossrefGoogle Scholar

  • [141] S. Yin, Y. Aita, M. Komatsu, J. Wang, Q. Tang, T. Sato, J. Mater. Chem. 15, 674 (2005) http://dx.doi.org/10.1039/b413377cCrossrefGoogle Scholar

  • [142] S. Yin, K. Ihara, Y. Aita, M. Komatsu, T. Sato, J. Photochem. Photobiol. A 179, 105 (2006) http://dx.doi.org/10.1016/j.jphotochem.2005.08.001CrossrefGoogle Scholar

  • [143] S. Yin, M. Komatsu, B. Liu, R. Li, Y. Wang, T. Sato, J. Mater. Sci. 43, 2240 (2006) http://dx.doi.org/10.1007/s10853-007-2071-2CrossrefGoogle Scholar

  • [144] K. Das, S.K. Panda, S. Chaudhuri, J. Crystal Growth 310, 3792 (2008) http://dx.doi.org/10.1016/j.jcrysgro.2008.05.039CrossrefGoogle Scholar

  • [145] J. Liu, W. Qin, S. Zuo, Y. Yu, Z. Hao, J. Hazard. Mater. 163, 273 (2009) http://dx.doi.org/10.1016/j.jhazmat.2008.06.086CrossrefGoogle Scholar

  • [146] N.R. de Tacconi, C.R. Chenthmarakshan, G. Yogeeswaran, A. Watcherenwong, R.S. de Zoysa, N.A. Basit, K. Rajeshwar, J. Phys. Chem. B 110, 25347 (2006) http://dx.doi.org/10.1021/jp064527vCrossrefGoogle Scholar

  • [147] C.A. Grimes, O.K. Varghese, S. Ranjan, Light, Water, Hydrogen: the solar generation of hydrogen by water photoelectrolysis (Springer, New York, 2008) Google Scholar

  • [148] G.H.A. Therese, P.V. Kamath, Chem. Mater. 12, 1195 (2000) http://dx.doi.org/10.1021/cm990447aCrossrefGoogle Scholar

  • [149] C. Natarajan, G. Nogami, J. Electrochem. Soc. 143, 1547 (2006) http://dx.doi.org/10.1149/1.1836677CrossrefGoogle Scholar

  • [150] K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, J. Photochem. Photobiol. C: Photochem. Reviews 9, 171 (2008) http://dx.doi.org/10.1016/j.jphotochemrev.2008.09.001CrossrefGoogle Scholar

  • [151] V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Electrochim. Acta 45, 921 (1991) http://dx.doi.org/10.1016/S0013-4686(99)00283-2CrossrefGoogle Scholar

  • [152] Y. Shimizu, N. Kuwano, T. Hyodo, M. Egashira, Sens. Actuat. B 83, 195 (2002) http://dx.doi.org/10.1016/S0925-4005(01)01040-1CrossrefGoogle Scholar

  • [153] J. Yamamoto, A. Tan, R. Shiratsuchi, S. Hayase, C.R. Chenthamarakshan, K. Rajeshwar, Adv. Mater.15, 1823 (2003) Google Scholar

  • [154] G. Patermarakis, K. Moussoutzanis, J. Electrochem. Soc. 142, 737 (1995) http://dx.doi.org/10.1149/1.2048527CrossrefGoogle Scholar

  • [155] D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res. 16, 3331 (2001) http://dx.doi.org/10.1557/JMR.2001.0457CrossrefGoogle Scholar

  • [156] Q. Cai, M. Paulose, O.K. Varghese, C.A. Grimes, J. Mater. Res. 20, 230 (2005) http://dx.doi.org/10.1557/JMR.2005.0020CrossrefGoogle Scholar

  • [157] J.M. Macák, H. Tsuchiya, P. Schmuki, Angew. Chem. Int. Ed. 44, 2100 (2005) http://dx.doi.org/10.1002/anie.200462459CrossrefGoogle Scholar

  • [158] M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Angew. Chem. Int. Ed. 44, 7463 (2005) http://dx.doi.org/10.1002/anie.200502781CrossrefGoogle Scholar

  • [159] P. Xiao, D. Liu, B.B. Garcia, S. Sepehri, Y. Zhang, G. Cao, Sens. Actuators B 134, 367 (2008) http://dx.doi.org/10.1016/j.snb.2008.05.005CrossrefGoogle Scholar

  • [160] G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Sol. Energy Mater. & Solar Cells 90, 2011 (2006) http://dx.doi.org/10.1016/j.solmat.2006.04.007CrossrefGoogle Scholar

  • [161] X. Xiao, K. Ouyang, R. Liu, J. Liang, Appl. Surf. Sci. 255, 3659 (2009) http://dx.doi.org/10.1016/j.apsusc.2008.10.014CrossrefGoogle Scholar

  • [162] Y. Xie, D. Fu, Mater. Research Bulletin 45, 628 (2010) http://dx.doi.org/10.1016/j.materresbull.2010.01.010CrossrefGoogle Scholar

  • [163] H. Ishihara, J.P. Bock, R. Sharma, F. Hardcastle, G.K. Kannarpady, M.K. Mazumder, A.S. Biris, Chem. Phys. Lett. 489, 81 (2010) http://dx.doi.org/10.1016/j.cplett.2010.02.038CrossrefGoogle Scholar

  • [164] L. Zhao, S. Mei, P.K. Chu, Y. Zhang, Z. Wu, Biomater. 31, 5072 (2010) http://dx.doi.org/10.1016/j.biomaterials.2010.03.014CrossrefGoogle Scholar

  • [165] S.-Y. Wu, W. -C. Lo, K.-C. Chen, J. -L. He, Curr. App. Phys. 10, S180 (2010) http://dx.doi.org/10.1016/j.cap.2009.11.067CrossrefGoogle Scholar

  • [166] L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, C.J. Lin, Sol. Ener. Mater. & Solar Cells 93, 1875 (2009) http://dx.doi.org/10.1016/j.solmat.2009.07.001CrossrefGoogle Scholar

  • [167] A.K. Jha, K. Prasad, A.R. Kulkarni, Int. J. Nanopart. (in press) Google Scholar

  • [168] A.K. Jha, K. Prasad, A. R. Kulkarni, Coll. and Surfaces B: Biointerfaces 71, 226 (2009) http://dx.doi.org/10.1016/j.colsurfb.2009.02.007CrossrefGoogle Scholar

  • [169] A. Ahmad, S. Senapati, M.I. Khan, R. Kumar, R. Ramani, V. Srinivas, Nanotech. 14, 824 (2003) http://dx.doi.org/10.1088/0957-4484/14/7/323CrossrefGoogle Scholar

  • [170] A. Ahmad, S. Senapati, M.I. Khan, R. Kumar, M. Sastry, Langmuir 19, 3550 (2003) http://dx.doi.org/10.1021/la026772lCrossrefGoogle Scholar

  • [171] T.-X. Fan, S.-K. Chow, D. Zhang, Progress in Mater. Sci. 54, 542 (2009) http://dx.doi.org/10.1016/j.pmatsci.2009.02.001CrossrefGoogle Scholar

  • [172] A.V. Kirthi, A.A. Rahuman, G. Rajakumar, S. Marimuthu, T. Santhoshkumar, C. Jayaseelan, G. Elango, A. Abduz Zahir, C. Kamaraj, A. Bagavan, Mater. Letters 65, 2745 (2011) http://dx.doi.org/10.1016/j.matlet.2011.05.077CrossrefGoogle Scholar

  • [173] V. Bansal, D. Rautaray, A. Bharde, K. Ahire, A. Sanyal, A. Ahmad, M. Sastry, J. Mater. Chem. 15, 2583 (2005) http://dx.doi.org/10.1039/b503008kCrossrefGoogle Scholar

  • [174] J. Cui, W. He, H. Liu, S. Liao, Y. Yue, Coll. and Surfaces B: Biointerfaces 74, 274 (2009) http://dx.doi.org/10.1016/j.colsurfb.2009.07.030CrossrefGoogle Scholar

  • [175] M. Sundrarajan, S. Gowri, Chalcogenide Lett. 8, 447 (2011) Google Scholar

  • [176] J.L. Sumerel, W. Yang, D. Kisailus, J.C. Weaver, J.H. Choi, D.E. Morse, Chem. Mater. 15, 4804 (2003) http://dx.doi.org/10.1021/cm030254uCrossrefGoogle Scholar

  • [177] N. Kröger, M.B. Dickerson, G. Ahmad, Y. Cai, M.S. Haluska, K.H. Sandhage, N. Poulsen, V.C. Sheppard, Angew. Chem. Int. Ed. 45, 7239 (2006) http://dx.doi.org/10.1002/anie.200601871CrossrefGoogle Scholar

  • [178] M.N. Tahir, P. Théato, W.E.G. Müller, H.C. Schröder, A. Borejko, S. Faiß, A. Janshoff, J. Huth, W. Tremel, Chem. Commun. 5533 (2005) CrossrefGoogle Scholar

  • [179] K.E. Cole, A.N. Ortiz, M.A. Schoonen, A.M. Valentine, Chem. Mater.18, 4592 (2006) CrossrefGoogle Scholar

  • [180] H.R. Luckarift, M.B. Dickerson, K.H. Sandhage, J.C. Spain, Small 2, 640 (2006) http://dx.doi.org/10.1002/smll.200500376CrossrefGoogle Scholar

  • [181] M.B. Dickerson, S.E. Jones, Y. Cai, G. Ahmad, R.R. Naik, N. Kröger, K.H. Sandhage, Chem. Mater. 20, 1578 (2008) http://dx.doi.org/10.1021/cm071515tCrossrefGoogle Scholar

  • [182] A.M. Azad, S.A. Akbar, S.G. Mhaisalkar, L.D. Birkefeld, K.S. Goto, J. Electrochem. Soc. 139, 3690 (1992) http://dx.doi.org/10.1149/1.2069145CrossrefGoogle Scholar

  • [183] S.L. Sewell, D.W. Wright, Chem. Mater. 18, 3108 (2006) http://dx.doi.org/10.1021/cm060342pCrossrefGoogle Scholar

  • [184] K.I. Sano, K.J. Shiba, J. Am. Chem. Soc. 125, 14234 (2003) http://dx.doi.org/10.1021/ja038414qCrossrefGoogle Scholar

  • [185] K.E. Cole, A.M. Valentine, Biomacromolecules 8, 1641 (2007) http://dx.doi.org/10.1021/bm061221lCrossrefGoogle Scholar

About the article

Published Online: 2012-01-29

Published in Print: 2012-04-01


Citation Information: Open Chemistry, Volume 10, Issue 2, Pages 279–294, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-011-0155-y.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Balázs Endrődi, Egon Kecsenovity, Krishnan Rajeshwar, and Csaba Janáky
ACS Applied Energy Materials, 2018
[2]
Mónica Patricia Blanco Vega, Mariana Hinojosa-Reyes, Aracely Hernández-Ramírez, Jorge Luis Guzmán Mar, Vicente Rodríguez-González, and Laura Hinojosa-Reyes
Journal of Sol-Gel Science and Technology, 2018
[3]
Hanan H Mohamed and Sahar K Mohamed
Materials Research Express, 2018, Volume 5, Number 1, Page 015057
[4]
Behnam Khorshidi, Ishita Biswas, Tanushree Ghosh, Thomas Thundat, and Mohtada Sadrzadeh
Scientific Reports, 2018, Volume 8, Number 1
[5]
Sandra Yadira Mendiola-Alvarez, Jorge Luis Guzmán-Mar, Gemma Turnes-Palomino, Fernando Maya-Alejandro, Adolfo Caballero-Quintero, Aracely Hernández-Ramírez, and Laura Hinojosa-Reyes
Environmental Technology, 2017, Page 1
[6]
A. B. Isaev, N. S. Shabanov, and F. F. Orudzhev
International Journal of Environmental Science and Technology, 2017
[7]
E. H. Alsharaeh, T. Bora, A. Soliman, Faheem Ahmed, G. Bharath, M. G. Ghoniem, Khalid M. Abu-Salah, and J. Dutta
Catalysts, 2017, Volume 7, Number 5, Page 133
[8]
S. Y. Mendiola-Alvarez, J. L. Guzmán-Mar, G. Turnes-Palomino, F. Maya-Alejandro, A. Hernández-Ramírez, and L. Hinojosa-Reyes
Environmental Science and Pollution Research, 2017, Volume 24, Number 14, Page 12673
[9]
A. B. Isaev, F. F. Orudjev, N. S. Shabanov, G. A. Magomedova, F. G. Gasanova, and I. Kh. Khizrieva
Nanotechnologies in Russia, 2015, Volume 10, Number 5-6, Page 357
[10]
D. Gregori, C. Guillard, I. Benchenaa, D. Leonard, and S. Parola
Applied Catalysis B: Environmental, 2015, Volume 176-177, Page 472
[11]
Satwant Kaur Shahi, Navneet Kaur, Amanpreet Kaur, and Vasundhara Singh
Journal of Materials Science, 2015, Volume 50, Number 6, Page 2443
[12]
Yan Wang, Yiming He, Qinghua Lai, and Maohong Fan
Journal of Environmental Sciences, 2014, Volume 26, Number 11, Page 2139
[13]
Tao Zhu, Meng Nan Chong, and Eng Seng Chan
ChemSusChem, 2014, Volume 7, Number 11, Page 2974
[14]
Somaieh Mohammadi, Adam Harvey, and Kamelia V.K. Boodhoo
Chemical Engineering Journal, 2014, Volume 258, Page 171
[15]
U. Nithiyanantham, Ananthakumar Ramadoss, Sivasankara Rao Ede, and Subrata Kundu
Nanoscale, 2014, Volume 6, Number 14, Page 8010
[16]
Chiajen Hsu, Yi Shen, Zi Wei, Dong Liu, and Fuqiang Liu
Journal of Alloys and Compounds, 2014, Volume 613, Page 117
[17]
Maciej Długosz, Joanna Waś, Krzysztof Szczubiałka, and Maria Nowakowska
Journal of Materials Chemistry A, 2014, Volume 2, Number 19, Page 6931
[18]
Naoko Watanabe, Taichi Kaneko, Yuko Uchimaru, Sayaka Yanagida, Atsuo Yasumori, and Yoshiyuki Sugahara
CrystEngComm, 2013, Volume 15, Number 48, Page 10533
[19]
Mălina Răileanu, Maria Crişan, Ines Niţoi, Adelina Ianculescu, Petruţa Oancea, Dorel Crişan, and Ligia Todan
Water, Air, & Soil Pollution, 2013, Volume 224, Number 6
[20]
A. Vomiero, I. Concina, E. Comini, C. Soldano, M. Ferroni, G. Faglia, and G. Sberveglieri
Nano Energy, 2012, Volume 1, Number 3, Page 372

Comments (0)

Please log in or register to comment.
Log in