Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 10, Issue 4

Issues

Volume 13 (2015)

Molecular dynamics simulation study of the diamond D5 substructures

Anahita Kyani / Mircea Diudea
Published Online: 2012-05-29 | DOI: https://doi.org/10.2478/s11532-012-0013-6

Abstract

Diamond D5 is the name proposed by Diudea for hyper-diamonds having their rings mostly pentagonal. Within D5, in crystallographic terms: the mtn structure, known in clathrates of type II, several substructures can be defined. In the present work, the structural stability of such intermediates/fragments appearing in the construction/destruction of D5 net was investigated using molecular dynamics simulation. Calculations were performed using an empirical many-body potential energy function for hydrocarbons. It has been found that, at normal temperature, the hexagonal hyper-rings are more stable while at higher temperature, the pentagonal ones are relatively more resistant against heat treatment.

Keywords: Diamond D5 substructures; Molecular dynamics simulation; Empirical potential; AIREBO potential

  • [1] M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerens and Carbon Nanotubes (Academic Press, New York, 1996) Google Scholar

  • [2] M.V. Diudea, Cs.L. Nagy, Periodic Nanostructures (Springer, Netherlands, 2007) http://dx.doi.org/10.1007/978-1-4020-6020-5CrossrefGoogle Scholar

  • [3] B.F. Pan, D.X. Cuiị, P. Xu, T. Huang, Q. Li, R. He, F. Gao, J. Biomed. Pharmaceut. Eng. 1, 13 (2007) Google Scholar

  • [4] M.V. Diudea, Studia Univ. Babes-Bolyai, Chemia 55, 11 (2010) Google Scholar

  • [5] S.V. Sarantseva, O.I. Bolshakova, S.I. Timoshenko, A.A. Kolobov, A.L. Schwarzman, Bull. Experim. Biol. Med. 150, 402 (2010) Google Scholar

  • [6] G. Benedek, L. Colombo, Mater. Sci. Forum 232, 247 (1996) http://dx.doi.org/10.4028/www.scientific.net/MSF.232.247CrossrefGoogle Scholar

  • [7] X. Blase, G. Benedek, M. Bernasconi, In: L. Colombo, A. Fasolino (Eds.), Computer-based modeling of novel carbon systems and their properties. Beyond nanotubes (Springer, London, 2010) Google Scholar

  • [8] T. Aste, D. Weaire, The pursuit of perfect packing, 2nd edition (Taylor and Francis, London, 2008) http://dx.doi.org/10.1201/9781420068184CrossrefGoogle Scholar

  • [9] M. Dutour Sikirić, O. Delgado-Friedrichs, M. Deza, Acta Cryst. A66, 602 (2010) Google Scholar

  • [10] M.V. Diudea, Cs.L. Nagy, A. Ilić, In: M.V. Putz (Ed.), Carbon Bonding and Structures, (Springer, London, 2011) Google Scholar

  • [11] L.A. Paquette, D.W. Balogh, R. Usha, D. Kountz, G.G. Christoph, Science 211, 575 (1981) http://dx.doi.org/10.1126/science.211.4482.575CrossrefGoogle Scholar

  • [12] H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wörth, L.T. Scott, M. Gelmont, D. Olevano, B. von Issendorff, Nature 407, 60 (2000) http://dx.doi.org/10.1038/35024037CrossrefGoogle Scholar

  • [13] M. Saito, Y. Miyamoto, Phys. Rev. Lett. 87, 035503 (2001) http://dx.doi.org/10.1103/PhysRevLett.87.035503CrossrefGoogle Scholar

  • [14] H. Prinzbach, F. Wahl, A. Weiler, P. Landenberger, J. Wörth, L.T. Scott, M. Gelmont, D. Olevano, F. Sommer, B. von Issendorff, Chem. Eur. J. 12, 6268 (2006) http://dx.doi.org/10.1002/chem.200501611CrossrefGoogle Scholar

  • [15] H.E. Simmons, III, J.E. Maggio, Tetrahedron Lett. 22, 287 (1981) http://dx.doi.org/10.1016/0040-4039(81)80077-9CrossrefGoogle Scholar

  • [16] L.A. Paquette, M. Vazeux, Tetrahedron Lett. 22, 291 (1981) http://dx.doi.org/10.1016/0040-4039(81)80078-0CrossrefGoogle Scholar

  • [17] D. Gestmann, H. Pritzkow, D. Kuck, Liebigs Ann (Eng). 1349 (1996) Google Scholar

  • [18] D. Kuck, Chem. Rev. 106, 4885 (2006) http://dx.doi.org/10.1021/cr050546+CrossrefGoogle Scholar

  • [19] S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112, 6472 (2000) http://dx.doi.org/10.1063/1.481208CrossrefGoogle Scholar

  • [20] S. Plimpton, J. Comp. Phys. 117, 1 (1995) http://dx.doi.org/10.1006/jcph.1995.1039CrossrefGoogle Scholar

  • [21] D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys. Condens. Matter 14, 783 (2002) http://dx.doi.org/10.1088/0953-8984/14/4/312CrossrefGoogle Scholar

  • [22] D.W. Brenner, Phys. Stat. Sol. 217, 23 (2000) http://dx.doi.org/10.1002/(SICI)1521-3951(200001)217:1<23::AID-PSSB23>3.0.CO;2-NCrossrefGoogle Scholar

  • [23] L. Verlet, Phys. Rev. 159, 98 (1967) http://dx.doi.org/10.1103/PhysRev.159.98CrossrefGoogle Scholar

  • [24] L. Verlet, Phys. Rev. 165, 201 (1968) http://dx.doi.org/10.1103/PhysRev.165.201CrossrefGoogle Scholar

About the article

Published Online: 2012-05-29

Published in Print: 2012-08-01


Citation Information: Open Chemistry, Volume 10, Issue 4, Pages 1028–1033, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-012-0013-6.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in