Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 11, Issue 11 (Nov 2013)

Issues

A theoretical study of the limits of the acidity of carbon acids in phase transfer catalysis in water and in liquid ammonia

Ibon Alkorta / José Elguero / Roger Gallo
Published Online: 2013-08-25 | DOI: https://doi.org/10.2478/s11532-013-0311-7

Abstract

The acidities of a large number of carbon acids have been theoretically calculated for the gas-phase and for DMSO solution. The gas-phase values, both ΔH and ΔG, are very well correlated with the available experimental data. From the calculated ΔG values in DMSO and the pKas in the same solvent, a homogeneous set of pK a (DMSO) values was devised that was used to generate pK a (water). These last pK as were used to establish the limits of the acidity of carbon acids for reactions under PTC conditions both alkylations and H/D exchange. A step further led to the pK as in liquid ammonia and from them to the virtual use of PTC using liquid ammonia instead of water.

Keywords: PTC; Liquid ammonia; Carbon acids; pKa; DFT calculations

  • [1] C.M. Starks, C.L. Liotta, M. Halpern, Phase Transfer Catalysis, Fundamentals, Applications, and Industrial Perspectives (Chapman & Hall, New York, 1994) http://dx.doi.org/10.1007/978-94-011-0687-0CrossrefGoogle Scholar

  • [2] R.A. Jones, Quaternary Ammonium Salts. Their Use in Phase-transfer Catalysis (Academic Press, London, 2001) Google Scholar

  • [3] A.G. Volkov, (Ed.), Interfacial Catalysis (Marcel Dekker, New York, 2003) Google Scholar

  • [4] K. Maruoka, Asymmetric Phase Transfer Catalysis (Wiley-VCH, Weinheim, 2008) http://dx.doi.org/10.1002/9783527622627CrossrefGoogle Scholar

  • [5] M. Mąkosza, B. Serafin, Roczniki Chem. 39, 1401 (1965) Google Scholar

  • [6] M. Mąkosza, B. Serafin, Roczniki Chem. 39, 1595 (1965) Google Scholar

  • [7] M. Mąkosza, B. Serafin, T. Urbański, Chim. Ind. (Paris) 93, 537 (1965) Google Scholar

  • [8] M. Mąkosza, Pure Appl. Chem. 72, 1399 (2000) http://dx.doi.org/10.1351/pac200072071399CrossrefGoogle Scholar

  • [9] M. Mąkosza, M. Fedoryński, Arkivoc iv, 7 (2006) http://dx.doi.org/10.3998/ark.5550190.0007.402CrossrefGoogle Scholar

  • [10] C.M. Starks, J. Am. Chem. Soc. 93, 195 (1971) http://dx.doi.org/10.1021/ja00730a033CrossrefGoogle Scholar

  • [11] A. Loupy, Ed. Microwaves in organic synthesis (Wiley-VCH, Weinheim, 2006) Google Scholar

  • [12] S.L. Regen, J. Am. Chem. Soc. 97, 5956 (1975) http://dx.doi.org/10.1021/ja00853a074CrossrefGoogle Scholar

  • [13] S.L. Regen, J. Am. Chem. Soc. 98, 6270 (1976) http://dx.doi.org/10.1021/ja00436a034CrossrefGoogle Scholar

  • [14] H.J.-M. Dou, R. Gallo, P. Hassanaly, J. Metzger, J. Org. Chem. 42, 4275 (1977) http://dx.doi.org/10.1021/jo00862a026CrossrefGoogle Scholar

  • [15] A.K. Dillow, S.L.J. Yun, D. Suleiman, D.L. Boatright, C.L. Liotta, C.A. Eckert, Ind. Eng. Chem. Res. 35, 1801 (1996) http://dx.doi.org/10.1021/ie9600405CrossrefGoogle Scholar

  • [16] K. Chandler, C.W. Culp, D.R. Lamb, C.L. Liotta, C.A. Eckert, Ind. Eng. Chem. Res. 37, 3252 (1998) http://dx.doi.org/10.1021/ie970741hCrossrefGoogle Scholar

  • [17] A. Loris, A. Perosa, M. Selva, P. Tundo, J. Org. Chem. 68, 4046 (2003) http://dx.doi.org/10.1021/jo0268308CrossrefGoogle Scholar

  • [18] W.S. Ryoo, Ph.D Thesis. Emulsions and Microemulsions of Water and Carbon Dioxide: Novel Surfactants and Stabilization Mechanisms (University of Texas at Austin, Austin, 2005) Google Scholar

  • [19] S. Thayumanavan, Patent EP1778614 A2, 2007 Google Scholar

  • [20] F.G. Bordwell, Acc. Chem. Res. 21, 456 (1988) http://dx.doi.org/10.1021/ar00156a004CrossrefGoogle Scholar

  • [21] J.J. Lagowski, Pure Appl. Chem. 25, 429 (1971) http://dx.doi.org/10.1351/pac197125020429CrossrefGoogle Scholar

  • [22] P. Ji, N. Powles, J.H. Atherton, M.I. Page, Org. Lett. 13, 6118 (2011) http://dx.doi.org/10.1021/ol2026153CrossrefGoogle Scholar

  • [23] A.D. Becke, Phys. Rev. A 38, 3098 (1988) http://dx.doi.org/10.1103/PhysRevA.38.3098CrossrefGoogle Scholar

  • [24] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) http://dx.doi.org/10.1103/PhysRevB.37.785CrossrefGoogle Scholar

  • [25] R. Ditchfield, W.J. Hehre, J.A. Pople, J. Chem. Phys. 54, 724 (1971) http://dx.doi.org/10.1063/1.1674902CrossrefGoogle Scholar

  • [26] M.J. Frisch, J.A. Pople, J.S. Binkley, J. Chem. Phys. 80, 3265 (1984) http://dx.doi.org/10.1063/1.447079CrossrefGoogle Scholar

  • [27] S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 55, 117 (1981) http://dx.doi.org/10.1016/0301-0104(81)85090-2CrossrefGoogle Scholar

  • [28] J. Tomasi, M. Persico. Chem. Rev. 94, 2027 (1994) http://dx.doi.org/10.1021/cr00031a013CrossrefGoogle Scholar

  • [29] R. Cammi, J. Tomasi, J. Comput. Chem. 16, 1449 (1995) http://dx.doi.org/10.1002/jcc.540161202CrossrefGoogle Scholar

  • [30] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.1 (Gaussian, Inc., Wallingford CT, 2009) Google Scholar

  • [31] P.J. Lindstrom, W.G. Mallard (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, USA, 2013) Google Scholar

  • [32] W.J. Hehre, L. Radom, P.v.R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory (John Wiley & Sons, New York, 1986) 411 Google Scholar

  • [33] I. Alkorta, J. Elguero, Tetrahedron 53, 9741 (1997) http://dx.doi.org/10.1016/S0040-4020(97)00597-8CrossrefGoogle Scholar

  • [34] M.C. Rezende, J. Braz. Chem. Soc. 12, 73 (2001) http://dx.doi.org/10.1590/S0103-50532001000100010CrossrefGoogle Scholar

  • [35] I.A. Koppel, J. Koppel, V. Pihl, I. Leito, M. Mishima, V.M. Vlasov, L.M. Yagupolskii, R.W. Taft, J. Chem. Soc. Perkin 1125 (2000) CrossrefGoogle Scholar

  • [36] A.M. Ross, D.L. Whalen, S. Eldin, R.M. Pollack, J. Am. Chem. Soc. 110, 1981 (1988) http://dx.doi.org/10.1021/ja00214a061CrossrefGoogle Scholar

  • [37] Technical Bulletin Reaction Solvent Dimethyl Sulfoxide (DMSO) (Gaylor Chemical Corporation, USA, 2011) http://chemistry-chemists.com/N3_2011/U/DMSO-technical_bulletin.pdf Google Scholar

  • [38] F.G. Bordwell, J.E. Bartmess, J.A. Hautala, J. Org. Chem. 43, 3095 (1978) http://dx.doi.org/10.1021/jo00410a001CrossrefGoogle Scholar

  • [39] W.P. Jencks, http://evans.harvard.edu/pdf/evans_pKa_table.pdf Google Scholar

  • [40] K. Shen, Y. Fu, J.-N. Li, L. Liu, Q.-X. Guo, Tetrahedron 63, 1568 (2007) http://dx.doi.org/10.1016/j.tet.2006.12.032CrossrefGoogle Scholar

  • [41] F.G. Bordwell, Pure Appl. Chem. 49, 963 (1977) http://dx.doi.org/10.1351/pac197749070963CrossrefGoogle Scholar

  • [42] I.E. Charif, S.M. Mekelleche, D. Villemin, N. Mora-Diez, J. Mol. Struct. THEOCHEM 818, 1 (2007) http://dx.doi.org/10.1016/j.theochem.2007.04.037CrossrefGoogle Scholar

  • [43] Y. Chiang, A.J. Kresge, P.A. Walsh, J. Am. Chem. Soc. 108, 6314 (1986) http://dx.doi.org/10.1021/ja00280a032CrossrefGoogle Scholar

  • [44] J.P. Guthrie, J. Cossar, Can. J. Chem. 64, 2470 (1986) http://dx.doi.org/10.1139/v86-407CrossrefGoogle Scholar

  • [45] M.J. O’Donnell, W.D. Bennett, W.A. Bruder, W.N. Jacobsen, K. Knuth, B. LeClef, R.L. Polt, F.G. Bordwell, S.R. Mrozack, T.A. Cripe, J. Am. Chem. Soc. 110, 8250 (1988) http://dx.doi.org/10.1021/ja00232a056CrossrefGoogle Scholar

  • [46] V.E. Matulis, Y.S. Halauko, O.A. Ivashkevich, P.N. Gaponik, J. Mol. Struct. THEOCHEM 909, 19 (2009) http://dx.doi.org/10.1016/j.theochem.2009.05.024CrossrefGoogle Scholar

  • [47] Ionization Constants of Organic Acids. Ionization constants of carbon acids (Michigan State University, USA) http://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/acidity2.htm Google Scholar

  • [48] A. Abbotto, S. Bradamante, G.A. Pagani, J. Org. Chem. 58, 449 (1993) http://dx.doi.org/10.1021/jo00054a031CrossrefGoogle Scholar

  • [49] M. Hojatti, A.J. Kresge, W.-H. Wang, J. Am. Chem. Soc. 109, 4023 (1987) http://dx.doi.org/10.1021/ja00247a031CrossrefGoogle Scholar

  • [50] J.P. Richard, G. Williams, J. Gao, J. Am. Chem. Soc. 121, 715 (1999) http://dx.doi.org/10.1021/ja982692lCrossrefGoogle Scholar

  • [51] T. Bug, H. Mayr, J. Am. Chem. Soc. 125, 12980 (2003) http://dx.doi.org/10.1021/ja036838eCrossrefGoogle Scholar

  • [52] G.I. Almerindo, D.W. Tondo, J.R. Pliego, J. Phys. Chem. A 108, 166 (2004) http://dx.doi.org/10.1021/jp0361071CrossrefGoogle Scholar

  • [53] S. Rayne, K. Forest, Nature Precedings (2010) http://dx.doi.org/10.1038/npre.2010.4381.1 CrossrefGoogle Scholar

  • [54] W.J. Spillane, P. Kavanagh, F. Young, H.J-M. Dou, J. Metzger, J. Chem. Soc. Perkin Trans. 1763 (1981) Google Scholar

  • [55] M. Mąkosza, M Fedorynski, Pol. J. Chem. 70, 1093 (1996) Google Scholar

  • [56] M. Mąkosza, Bull. Acad. Pol. Sci. 15, 165 (1967) Google Scholar

  • [57] M. Mąkosza, J. Przyborowski, R. Klajn, A. Kwast, Synlett 1773 (2000) Google Scholar

  • [58] M. Judka, A. Wojtasiewicz, W. Danikiewicz, M. Mąkosza, Tetrahedron 63, 8902 (2007) http://dx.doi.org/10.1016/j.tet.2007.06.014CrossrefGoogle Scholar

  • [59] G.E. Hall, R. Piccolini, J.D. Roberts, J. Am. Chem. Soc. 77, 4540 (1955) http://dx.doi.org/10.1021/ja01622a033CrossrefGoogle Scholar

  • [60] P. Ji, J. Atherton, M.I. Page, J. Org. Chem. 76, 1425 (2011) http://dx.doi.org/10.1021/jo102173kCrossrefGoogle Scholar

  • [61] A. Sievers, R. Wolfenden, J. Am. Chem. Soc. 124, 13986 (2002) http://dx.doi.org/10.1021/ja021073gCrossrefGoogle Scholar

  • [62] S. Sharma, J.K. Lee, J. Org. Chem. 69, 7018 (2004) http://dx.doi.org/10.1021/jo0303362CrossrefGoogle Scholar

  • [63] E.V. Anslyn, D.A. Dougherty, Modern Physical Organic Chemistry (University Science Books, Sausalito, 2006) Google Scholar

  • [64] J.H. Takemoto, J.J. Lagowski, J. Am. Chem. Soc. 91, 3785 (1969) http://dx.doi.org/10.1021/ja01042a016CrossrefGoogle Scholar

  • [65] B.G. Cox, Acids and Bases, Solvent Effects on Acid-Base Strength (Oxford University Press, Oxford, UK, 2013) 93 http://dx.doi.org/10.1093/acprof:oso/9780199670512.001.0001CrossrefGoogle Scholar

  • [66] S. Julià, P. Sala, J. del Mazo, M. Sancho, C. Ochoa, J. Elguero, J.-P. Fayet, M.C. Vertut, J. Heterocycl. Chem. 19, 1141 (1982) http://dx.doi.org/10.1002/jhet.5570190531CrossrefGoogle Scholar

  • [67] L. Avila, J. Elguero, S. Julià, J.M. del Mazo, Heterocycles 20, 1787 (1983) http://dx.doi.org/10.3987/R-1983-09-1787CrossrefGoogle Scholar

  • [68] R.G. Pearson, R.L. Dillon, J. Am. Chem. Soc. 75, 2439 (1953) http://dx.doi.org/10.1021/ja01106a048CrossrefGoogle Scholar

  • [69] J.R. Pliego, J.M. Riveros, J. Phys. Chem. A 106, 7434 (2002) http://dx.doi.org/10.1021/jp025928nCrossrefGoogle Scholar

  • [70] M.C. Rezende, Tetrahedron 57, 5923 (2001) http://dx.doi.org/10.1016/S0040-4020(01)00563-4CrossrefGoogle Scholar

  • [71] Y. Chiang, A.J. Kresge, J. Wirz, J. Am. Chem. Soc. 106, 6392 (1984) http://dx.doi.org/10.1021/ja00333a049CrossrefGoogle Scholar

  • [72] Z. Wang (Ed.), Comprehensive Organic Name Reactions and Reagents (John Wiley & Sons, USA, 2009) Google Scholar

About the article

Published Online: 2013-08-25

Published in Print: 2013-11-01


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-013-0311-7.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Diana Dragancea, Sergiu Shova, Éva A. Enyedy, Martin Breza, Peter Rapta, Luca M. Carrella, Eva Rentschler, Anatolie Dobrov, and Vladimir B. Arion
Polyhedron, 2014, Volume 80, Page 180

Comments (0)

Please log in or register to comment.
Log in