Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2018: 163.25

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 11, Issue 12

Issues

Volume 13 (2015)

Copper complexes formed by 3,5-bis(2,2′-bipyridin-4-ylethynyl)benzoic acid and its methyl and ethyl esters as studied by electrospray ionization mass spectrometry

Rafał Frański / Marta Kowalska / Joanna Czerniel / Maciej Zalas / Błażej Gierczyk / Michał Cegłowski / Grzegorz Schroeder
Published Online: 2013-09-26 | DOI: https://doi.org/10.2478/s11532-013-0324-2

Abstract

Electrospray ionization mass spectrometry was used to study the complexes of ligands containing two bipyridine units, namely 3,5-bis(2,2-bipyridin-4-ylethynyl)benzoic acid (1) and its methyl and ethyl esters (2, 3), with copper cation, with CuCl2 as a source of copper. It was found that the type of complexes formed strongly depends on CuCl2 concentration. At lower CuCl2 concentration, the detected complexes were rather simple and some of them were formed upon electrospray ionization conditions e.g. ions [22+Cu2]2+ and [32+Cu2]2+ (complexes ligand-Cu(I) of stoichiometry 2:2) which are analogical to the well known, for quaterpyridine, helical complexes. At higher CuCl2 concentration, the detected complexes were more complicated, and most of them contained copper cations bridged by chlorides. The largest ions were [L2+Cu4Cl6]2+. The CID MS/MS spectra of these ions allowed determination of their mass spectrometric fragmentation pathways and as a consequence their structure elucidation.

Keywords: Bipyridine; Copper complexes; Electrospray ionization mass spectrometry

  • [1] R.M. Ramadan, S.M. Shohayeb, R.G. Mohamed, Synth. React. Inorg. 43, 609 (2013) http://dx.doi.org/10.1080/15533174.2012.752390CrossrefGoogle Scholar

  • [2] P. Pallavicini, G. Dacarro, P. Grisoli, C. Mangano, M. Patrini, F. Rigoni, L. Sangaletti, A. Taglietti, Dalton Trans. 42, 4552 (2013) http://dx.doi.org/10.1039/c2dt32607hCrossrefGoogle Scholar

  • [3] J.A. Rusanova, O.V. Nesterova, R.I. Zubatyuk, O.V. Kozachuk, Acta Crystallogr. E 69, m212 (2013) http://dx.doi.org/10.1107/S1600536813006867CrossrefGoogle Scholar

  • [4] M.G. Fraser, H. Van Der Salm, S.A. Cameron, J.E. Barnsley, K.C. Gordon, Polyhedron 52, 623 (2013) http://dx.doi.org/10.1016/j.poly.2012.08.001CrossrefGoogle Scholar

  • [5] F. Xu, T. Tao, K. Zhang, X.-X. Wang, W. Huang, X.-Z. You, Dalton Trans. 42, 3631 (2013) http://dx.doi.org/10.1039/c2dt32281aCrossrefGoogle Scholar

  • [6] P.S. Lopes, D.A. Paixão, F.C.S. De Paula, A.M.D.C. Ferreira, J. Ellena, S. Guilardi, E.C. Pereira-Maia, W. Guerra, J. Mol. Struct. 1034, 84 (2013) http://dx.doi.org/10.1016/j.molstruc.2012.09.022CrossrefGoogle Scholar

  • [7] P.M. Selvakumar, S. Nadella, J. Sahoo, E. Suresh, P.S. Subramanian, J. Coord. Chem. 66, 287 (2013) http://dx.doi.org/10.1080/00958972.2012.755521CrossrefGoogle Scholar

  • [8] N.R Kelly, S. Goetz, C.S. Hawes, P.E. Kruger, Inorg. Chim. Acta 402, 102 (2013) http://dx.doi.org/10.1016/j.ica.2012.12.033CrossrefGoogle Scholar

  • [9] A. Fazal, B. El Ali, L. Ouahab, M. Fettouhi, Polyhedron 49, 7 (2013) http://dx.doi.org/10.1016/j.poly.2012.09.028CrossrefGoogle Scholar

  • [10] J.-F. Liu, Y. Liu, X.-Y. Lü, L.-L. Gao, T.-P. Hu, Chinese J. Inorg. Chem. 29, 155 (2013) Google Scholar

  • [11] G. Xu, L. Tang, H. Liu, Ionics 19, 309 (2013) http://dx.doi.org/10.1007/s11581-012-0721-0CrossrefGoogle Scholar

  • [12] H.-L. Yeung, K.-Ch. Sham, W.-Y. Wong, C.-Y. Wong, H.-L. Kwong, Eur. J. Inorg. Chem. 5112 (2011) Google Scholar

  • [13] E.C. Constable, C.E. Housecroft, J.R. Price, J.A. Zampese, Inorg. Chem. Commun. 13, 683 (2010) http://dx.doi.org/10.1016/j.inoche.2010.03.019CrossrefGoogle Scholar

  • [14] M. Wałęsa-Chorab, V. Patroniak, G. Schroeder, R. Frański, Eur. J. Mass. Spectrom. 16, 163 (2010) http://dx.doi.org/10.1255/ejms.1029CrossrefGoogle Scholar

  • [15] E.C. Constable, F. Heirtzler, M. Neuburger, M. Zehnder Steric, J. Am. Chem. Soc. 119, 5606 (1997) http://dx.doi.org/10.1021/ja9623626CrossrefGoogle Scholar

  • [16] K.T. Potts, M. Keshavarz-K, F.S. Tham, H.D. Abruiia, C.R. Arana, Inorg. Chem. 32, 4422 (1993) http://dx.doi.org/10.1021/ic00072a043CrossrefGoogle Scholar

  • [17] E. Colacio, J.E. Perea-Buceta, A.J. Mota, E.K. Brechin, A. Prescimone, M. Hänninen, P. Seppälä, R. Sillanpää, Chem. Commun. 48, 805 (2012) http://dx.doi.org/10.1039/c1cc16590aCrossrefGoogle Scholar

  • [18] S. Liu, A.D. Hamilton, Chem. Commun. 587 (1999) CrossrefGoogle Scholar

  • [19] E.C. Constable, M.J. Harmon, A.J. Edwards, P.R. Raithby, J. Chem. Soc. Dalton Trans. 18, 2669 (1994) http://dx.doi.org/10.1039/dt9940002669CrossrefGoogle Scholar

  • [20] C.M. Grant, B.J. Stamper, M.J. Knapp, K. Folting, J.C. Huffman, D.N. Hendrickson, G. Christou, J. Chem. Soc. Dalton Trans. 3399 (1999) CrossrefGoogle Scholar

  • [21] V. Grosshenny, R Ziessel, J. Chem. Soc. Dalton Trans. 817 (1993) CrossrefGoogle Scholar

  • [22] J.B. Carroll, J. Braddock-Wilking, Organometallics 32, 1905 (2013) http://dx.doi.org/10.1021/om400022fCrossrefGoogle Scholar

  • [23] E.C. Constable, C.E. Housecroft, M. Neuburger, J.R. Price, J.A. Zampese, CrystEngComm. 12, 2928 (2010) http://dx.doi.org/10.1039/c002827dCrossrefGoogle Scholar

  • [24] A. Breitruck, H.E. Hoster, C. Meier U. Ziener, R.J. Behm, Surf. Sci. 601, 4200 (2007) http://dx.doi.org/10.1016/j.susc.2007.04.173CrossrefGoogle Scholar

  • [25] E.C. Constabl, I.A. Hougen, C.E. Housecroft, M. Neuburger, S. Schaffner, L.A. Whall, Inorg. Chem. Commun. 7, 1128 (2004) http://dx.doi.org/10.1016/j.inoche.2004.08.010CrossrefGoogle Scholar

  • [26] A. Marquis-Rigault, A. Dupont-Gervais, A. Van Dorsselaer, J.-M. Lehn, Ang. Chem. Int. Ed. Eng. 35, 1395 (1996) Google Scholar

  • [27] M. Zalas, B. Gierczyk, M. Cegłowski, G. Schroeder, Chem. Papers 66, 733 (2012) http://dx.doi.org/10.2478/s11696-012-0196-5CrossrefGoogle Scholar

  • [28] C.A. Schalley, Int. J. Mass Spectrom. 194, 11 (2000) http://dx.doi.org/10.1016/S1387-3806(99)00243-2CrossrefGoogle Scholar

  • [29] C.A. Schalley, Mass Spectrom. Rev. 20, 253 (2001) http://dx.doi.org/10.1002/mas.10009CrossrefGoogle Scholar

  • [30] V.B. Di Marco, G.G. Bombi, Mass Spectrom. Rev. 25, 347 (2006) http://dx.doi.org/10.1002/mas.20070CrossrefGoogle Scholar

  • [31] V.B. Di Marco, G.G. Bombi, S. Zambon, P. Traldi, J. Mass Spectrom. 44, 120 (2009) http://dx.doi.org/10.1002/jms.1481CrossrefGoogle Scholar

  • [32] A. Tullio, S. Reale and F. De Angelis, J. Mass Spectrom. 40, 845 (2005) http://dx.doi.org/10.1002/jms.896CrossrefGoogle Scholar

  • [33] J.M.J. Nuutinen, J. Ratilainen, K. Rissanen, P. Vainiotalo, J. Mass Spectrom. 36, 902 (2001) http://dx.doi.org/10.1002/jms.191CrossrefGoogle Scholar

  • [34] W. Henderson, J.S. McIndoe, Mass Spectrometry of Inorganic, Coordination and Organometallic Compounds (John Wiley & Sons, Ltd, Chichester, UK, 2005) http://dx.doi.org/10.1002/0470014318CrossrefGoogle Scholar

  • [35] J.S. Brodbelt, Int. J. Mass Spectrom. 200, 57 (2000) http://dx.doi.org/10.1016/S1387-3806(00)00302-XCrossrefGoogle Scholar

  • [36] F. Allain, H. Virelizier, C. Moulin, C.K. Jankowski, J.F. Dozol, J.C. Tabet, Spectroscopy 14, 127 (2000) http://dx.doi.org/10.1155/2000/687809CrossrefGoogle Scholar

  • [37] C. Walther, J. Rothe, M. Fuss, S, Büchner, S. Koltsov, T. Bergmann, Anal. Bioanal. Chem. 388, 409 (2007) http://dx.doi.org/10.1007/s00216-007-1223-1CrossrefGoogle Scholar

About the article

Published Online: 2013-09-26

Published in Print: 2013-12-01


Citation Information: Open Chemistry, Volume 11, Issue 12, Pages 2066–2075, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-013-0324-2.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in