Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2018: 163.25

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 11, Issue 12

Issues

Volume 13 (2015)

Salutaridine and its derivatives as thebaine-equivalents in the synthesis of aporphines

Antal Udvardy / Attila Sipos
  • Department of Pharmaceutical Chemistry, Medical and Health Science Center, University of Debrecen, P.O. Box 70, H-4032, Debrecen, Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-26 | DOI: https://doi.org/10.2478/s11532-013-0330-4

Abstract

Here we report the transformation of tetracyclic morphinan salutaridine (1) into 2,3,10,11-tetrasubstituted (R)-aporphines. This method serves as another chemical proof of the previously verified biosynthetic connection with pentacyclic morphinan-6,8-diene-type thebaine. In the presence of nucleophiles, this procedure could lead to pharmacologically interesting new tetrasubstituted aporphinoids. The enantioselective synthesis of 7S-salutaridinol (2) has been also achieved in order to investigate the acid-catalyzed reactions of this natural morphinan.

Keywords: Alkaloids; Rearrangements; Reductions; Morphinans; Aporphines

  • [1] M.H. Zenk, M. Rueffer, M. Amann, B. Deus-Neumann, N. Nagakura, J. Nat. Prod. 48, 725 (1985) http://dx.doi.org/10.1021/np50041a003CrossrefGoogle Scholar

  • [2] D.H.R. Barton, G.W. Kirby, W. Steglich, G.M. Thomas, A.R. Battersby, T.A. Dobson, H. Ramuz, J. Chem. Soc. 2423 (1965) CrossrefGoogle Scholar

  • [3] M.H. Zenk, R. Gerardy, R. Stadler, J. Chem. Soc., Chem. Commun. 1725 (1989) CrossrefGoogle Scholar

  • [4] R. Gerardy, M.H. Zenk, Phytochem. 32, 79 (1992) http://dx.doi.org/10.1016/0031-9422(92)80111-QCrossrefGoogle Scholar

  • [5] R. Lenz, M.H. Zenk, Tetrahedron Lett. 35, 3897 (1994) http://dx.doi.org/10.1016/S0040-4039(00)76696-2CrossrefGoogle Scholar

  • [6] Cs. Szántay, G. Dörnyei, G. Blaskó, In; G.A. Cordell, A. Brossi (Eds.), The Alkaloids: Chemistry and Physiology (Academic Press Inc., New York, London, 1994) Vol. 45, 128 Google Scholar

  • [7] S. Hosztafi, In: J. Bernáth (Ed.), Chemistry-Biochemistry of Poppy, 1. Chemical Structures of Alkaloids; Poppy, The Genus Papaver (Harwood Academic Publishers, Amsterdam, 1998) 105 Google Scholar

  • [8] J.V. Aldrich, S.C. Vigil-Cruz, Burger’s Medicinal Chemistry and Drug Discovery (John Wiley & Sons, New York, 2003) 329 Google Scholar

  • [9] M. Eguchi, Med. Res. Rev. 24, 182 (2004) http://dx.doi.org/10.1002/med.10059CrossrefGoogle Scholar

  • [10] S. Berényi, Cs. Csutorás, A. Sipos, Curr. Med. Chem. 16, 3215 (2009) http://dx.doi.org/10.2174/092986709788803295CrossrefGoogle Scholar

  • [11] A. Zhang, Y. Zhang, A.R. Branfman, R.J. Baldessarini, J.L. Neumeyer, J. Med. Chem. 50, 171 (2007) http://dx.doi.org/10.1021/jm060959iCrossrefGoogle Scholar

  • [12] S.J. Finnema, B. Bang-Andersen, H.V. Wikstrom, C. Halldin, Curr. Top. Med. Chem. 10, 1477 (2010) http://dx.doi.org/10.2174/156802610793176837CrossrefGoogle Scholar

  • [13] A. Sipos, S. Berényi, Tetrahedron 64, 5851 (2008) http://dx.doi.org/10.1016/j.tet.2008.04.069CrossrefGoogle Scholar

  • [14] S. Günay, H.B. Gülgeze, B. Gözler, Planta Med. 58, 368 (1992) http://dx.doi.org/10.1055/s-2006-961487CrossrefGoogle Scholar

  • [15] B. Tisserat, M. Berhow, Eng. Life Sci. 9, 190 (2009) http://dx.doi.org/10.1002/elsc.200800100CrossrefGoogle Scholar

  • [16] C.C. Hodges, H. Rapoport, Biochem. 21, 3729 (1982) http://dx.doi.org/10.1021/bi00259a001CrossrefGoogle Scholar

  • [17] G. Horváth, S. Makleit, Acta Chim. Acad. Sci. Hung. 106, 37 (1981) Google Scholar

  • [18] R. Dumont, A.H. Newman, K.C. Rice, A. Brossi, V. Toome, B. Wegrzynski, FEBS Lett. 206, 125 (1986) http://dx.doi.org/10.1016/0014-5793(86)81353-9CrossrefGoogle Scholar

  • [19] S. Wiegand, H.J. Schaefer, Tetrahedron 51, 5341 (1995) http://dx.doi.org/10.1016/0040-4020(95)00248-7CrossrefGoogle Scholar

  • [20] Y.-G. Si, M.P. Gardner, F.I. Tarazi, R.J. Baldessarini, J.L. Neumeyer, J. Med. Chem. 51, 983 (2008) http://dx.doi.org/10.1021/jm701045jCrossrefGoogle Scholar

  • [21] L. Herm, S. Berényi, A. Vonk, A. Rinken, A. Sipos, Bioorg. Med. Chem. 17, 4756 (2009) http://dx.doi.org/10.1016/j.bmc.2009.04.047CrossrefGoogle Scholar

  • [22] H. Zhang, N. Ye, S. Zhou, L. Guo, L. Zheng, Z. Liu, B. Gao, X. Zhen, A. Zhang, J. Med. Chem. 54, 4324 (2011) http://dx.doi.org/10.1021/jm200347tCrossrefGoogle Scholar

  • [23] S. Berényi, Cs. Csutorás, S. Makleit, F. Auth, I. Laszlovszky, B. Kiss, E. Kárpáti, M. Lőw, Med. Chem. Res. 7, 509 (1997) Google Scholar

  • [24] H. Guinaudeau, M. Leboeuf, A. Cavé, J. Nat. Prod. 57, 1033 (1994) http://dx.doi.org/10.1021/np50110a001CrossrefGoogle Scholar

  • [25] M. Moriyasu, J. Wang, H. Zhang, G.-B. Lu, M. Ichimaru, A. Kato, Nat. Med. (Tokyo) 50, 413 (1996) Google Scholar

  • [26] S. Berényi, M. Czirják, S. Makleit, J. Chem. Soc., Perkin Trans. 1, 2137 (1993) http://dx.doi.org/10.1039/p19930002137CrossrefGoogle Scholar

  • [27] A. Sipos, S. Berényi, B. Kiss, É. Schmidt, I. Greiner, Bioorg. Med. Chem. 16, 3773 (2008) http://dx.doi.org/10.1016/j.bmc.2008.01.057CrossrefGoogle Scholar

  • [28] A.W. Sromek, Y.-G. Si, T. Zhang, S.R. George, P. Seeman, J.L. Neumeyer, ACS Med. Chem. Lett. 2, 189 (2011) http://dx.doi.org/10.1021/ml1001689CrossrefGoogle Scholar

  • [29] F. E. Granchelli, C.N. Filer, A.H. Soloway, J.L. Neumeyer, J. Org. Chem. 45, 2275 (1980) http://dx.doi.org/10.1021/jo01300a001CrossrefGoogle Scholar

  • [30] H. Lotter, J. Gollwitzer, M.H. Zenk, Tetrahedron Lett. 33, 2443 (1992) http://dx.doi.org/10.1016/S0040-4039(00)92210-XCrossrefGoogle Scholar

  • [31] T. Takahashi, M. Miyazawa, J. Tsuji, Tetrahedron Lett. 26, 5139 (1985) http://dx.doi.org/10.1016/S0040-4039(00)98885-3CrossrefGoogle Scholar

  • [32] A. Coop, J.W. Janetka, J.W. Lewis, K.C. Rice, J. Org. Chem. 63, 4392 (1998) http://dx.doi.org/10.1021/jo9801972CrossrefGoogle Scholar

  • [33] V. Preininiger, J. Vesely, O. Gasic, V. Simanek, L. Dolejs, Coll. Czech. Chem. Commun. 40, 699 (1975) http://dx.doi.org/10.1135/cccc19750699CrossrefGoogle Scholar

  • [34] J. Slavík, L. Slavíková, Coll. Czech. Chem. Comm. 50, 1216 (1985) http://dx.doi.org/10.1135/cccc19851216CrossrefGoogle Scholar

  • [35] C. Schöpf, F. Borkowski, Justus Liebigs Ann. Chem. 458, 148 (1927) http://dx.doi.org/10.1002/jlac.19274580110CrossrefGoogle Scholar

  • [36] S. Berényi, Cs. Csutorás, S. Gyulai, S. Makleit, Synth. Commun. 25, 283 (1995) http://dx.doi.org/10.1080/00397919508011359CrossrefGoogle Scholar

  • [37] A.D. Becke, J. Chem. Phys. 98, 5648 (1993) http://dx.doi.org/10.1063/1.464913CrossrefGoogle Scholar

  • [38] A.D. Becke, Phys. Rev. A 38, 3098 (1988) http://dx.doi.org/10.1103/PhysRevA.38.3098CrossrefGoogle Scholar

  • [39] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) http://dx.doi.org/10.1103/PhysRevB.37.785CrossrefGoogle Scholar

  • [40] S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980) http://dx.doi.org/10.1139/p80-159CrossrefGoogle Scholar

  • [41] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford CT, 2004 Google Scholar

About the article

Published Online: 2013-09-26

Published in Print: 2013-12-01


Citation Information: Open Chemistry, Volume 11, Issue 12, Pages 2022–2030, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-013-0330-4.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Bahman Ghavimi and Philip Magnus
Organic Letters, 2014, Volume 16, Number 6, Page 1708

Comments (0)

Please log in or register to comment.
Log in