Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 11, Issue 12

Issues

Volume 13 (2015)

CaZrO3-based powders suitable for manufacturing electrochemical oxygen probes

Magdalena Dudek / Alicja Rapacz-Kmita
Published Online: 2013-09-26 | DOI: https://doi.org/10.2478/s11532-013-0332-2

Abstract

Calcium zirconate powders doped with a small amount of CaO were synthesised using the Pechini method. X-ray analysis revealed that solid solution was formed in the concentration up to 51.5% mol CaO. For synthesis of stoichiometric CaZrO3, the highest temperature was required (1150°C), but introduction of excess CaO from 50.5 to 51.5% mol enabled us to lower the synthesis temperature to 800°C. The sintering behaviour of such samples under non-isothermal conditions was studied by dilatometric methods. Deviations were found in stoichiometry; by increasing the CaO concentration in CaZrO3 sinterability improved in comparison to CaZrO3 with stoichiometric composition. The presence of CaO as second phase caused deterioration of the sinterability of the CaZrO3-based samples. Pellets sintered at 1500°C for 2 h reached 96–98% of theoretical density. SEM and TEM observations were used to characterise the microstructure of the prepared samples. The electrical properties of CaZrO3-based samples were investigated by the AC-impedance spectroscopy method. It was found that introduction of excess CaO into the CaZrO3 structure caused an increase in ionic conductivity up to the solubility limit. The possibility of using CaZrO3-based samples for constructing prototype electrochemical oxygen probes to determine activity of oxygen dissolved in molten copper is also demonstrated.

Keywords: CaZrO3; Electrochemical oxygen probe; Ionic conductivity; Electrolyte

  • [1] J. Szczerba, Z. Pędzich, Ceramic International 36, 535 (2010) http://dx.doi.org/10.1016/j.ceramint.2009.09.025CrossrefGoogle Scholar

  • [2] A. Obregón, J. L. Rodríguez-Galicia, J. L. Cuevas, P. Pena, C. Baudin, J. Eur. Ceram. Soc. 31, 61 (2011) http://dx.doi.org/10.1016/j.jeurceramsoc.2010.08.020CrossrefGoogle Scholar

  • [3] C. Gargori, S. Cerro, R. Galindo, A. García, M. Llusar, G. Monrós, Ceramic International 38, 4453 (2012) http://dx.doi.org/10.1016/j.ceramint.2012.02.019CrossrefGoogle Scholar

  • [4] J.E. Contreras, G.A. CastilloT, E.A. Rodrıguez, T.K. Das, A.M. Guzman, Materials Characterization 54, 354 (2005) http://dx.doi.org/10.1016/j.matchar.2004.12.005CrossrefGoogle Scholar

  • [5] M.A. Pena, J.L.G. Fierro, Chem. Rev. 101, 1981 (2001) http://dx.doi.org/10.1021/cr980129fCrossrefGoogle Scholar

  • [6] J.G. Cheng, J.S. Zhou, J.B. Goodenough, Y. Sui, Y. Ren, M.R. Suchomel, Phys. Rev. B 83 644 (2011) Google Scholar

  • [7] V.M. Orera, J.I. Pena, R.I. Merino, J.A. Lazaro, J.A. Valles, M.A. Rebolledo, Appl. Phys. Lett. 71, 2746 (1997) http://dx.doi.org/10.1063/1.120200CrossrefGoogle Scholar

  • [8] R.I. Merino, R.A. Pardo, J.I. Pena, G.F. De la Fuente, A. Larrea, V.M. Orera, Phys. Rev. B56, 10907 (1997) Google Scholar

  • [9] R. Balda, S. García-Revilla, J. Fernańdez, R.I. Merino, J.I. Penã, V.M. Orera, J. Luminescence 129, 1422 (2009) http://dx.doi.org/10.1016/j.jlumin.2009.01.024CrossrefGoogle Scholar

  • [10] Y. Suzuki, H.J. Hwang, N. Kondo, T. Ohji, J. Am. Ceram. Soc. 84, 2713 (2001) http://dx.doi.org/10.1111/j.1151-2916.2001.tb01079.xCrossrefGoogle Scholar

  • [11] Y. Suzuki, N. Kondo, T. Ohji, J. Am. Ceram. Soc. 86, 1128 (2003) http://dx.doi.org/10.1111/j.1151-2916.2003.tb03435.xCrossrefGoogle Scholar

  • [12] P. Stoch, J. Szczerba, J. Lis, D. Madej, Z. Pędzich, J. Eur. Ceram. Soc. 32, 665 (2012) http://dx.doi.org/10.1016/j.jeurceramsoc.2011.10.011CrossrefGoogle Scholar

  • [13] T. Yajima, K. Koide, N. Fukatsu, T. Ohashi, H. Iwahara, Sensors and Actuators B: Chemical, 14(1–3), 697 (1993) http://dx.doi.org/10.1016/0925-4005(93)85149-5CrossrefGoogle Scholar

  • [14] R.A. Davies, M.S. Islam, J.D. Gale, Solid State Ionics 126, 323 (1999) http://dx.doi.org/10.1016/S0167-2738(99)00244-1CrossrefGoogle Scholar

  • [15] R.A. Davies, M.S. Islam, A.V. Chadwick, G.E. Rush, Solid State Ionics 130, 115 (2000) http://dx.doi.org/10.1016/S0167-2738(00)00573-7CrossrefGoogle Scholar

  • [16] W. Englen, A. Buekenhoutd, Solid State Ionics 96, 55 (1997) http://dx.doi.org/10.1016/S0167-2738(96)00615-7CrossrefGoogle Scholar

  • [17] D. Janke, Metallurgical Transactions 13B, 227 (1982) CrossrefGoogle Scholar

  • [18] A. Weyl, S. Wei, D. Janke, Steel research 65, 167 (1994) Google Scholar

  • [19] G. Róg, M. Dudek, A. Kozłowska-Róg, M. Bućko, Electrochimica Acta 47, 4523 (2002) http://dx.doi.org/10.1016/S0013-4686(02)00540-6CrossrefGoogle Scholar

  • [20] M. Dudek, E. Drożdż-Cieśla, J. Alloys Comp. 475, 846 (2009) http://dx.doi.org/10.1016/j.jallcom.2008.08.020CrossrefGoogle Scholar

  • [21] M. Dudek, Materials Research Bulletin 44 1879 (2009) http://dx.doi.org/10.1016/j.materresbull.2009.05.008CrossrefGoogle Scholar

  • [22] S. González-López, A. Romero-Serrano, R. Vargas-García, B. Zeifert, A. Cruz-Ramírez, Revista de Metalurgia 46, 219 (2010) http://dx.doi.org/10.3989/revmetalm.0927CrossrefGoogle Scholar

  • [23] M. Pollet, S. Marinel, G. Desgardin, J. Eur. Ceram. Soc. 24, 119 (2004) http://dx.doi.org/10.1016/S0955-2219(03)00122-5CrossrefGoogle Scholar

  • [24] X. Guo, Computational Materials Science 20, 168 (2001) http://dx.doi.org/10.1016/S0927-0256(00)00174-9CrossrefGoogle Scholar

  • [25] M.C. Martin, M.L. Mecartney, Solid State Ionics 161, 67 (2003) http://dx.doi.org/10.1016/S0167-2738(03)00265-0CrossrefGoogle Scholar

  • [26] M. Dudek, Advances in Materials Science 1,14 (2008). Google Scholar

  • [27] M. Dudek, M. Bućko, Solid State Ionics 157, 183, (2003) http://dx.doi.org/10.1016/S0167-2738(02)00207-2CrossrefGoogle Scholar

  • [28] M. Dudek, W. Bogusz, Ceramics, Polish Ceramic Bulletin 91, 168 (2005) Google Scholar

  • [29] M. Dudek, G. Róg, W. Bogusz, A. Kozłowska -Róg, M.M. Bućko, Ł. Zych, Materials Science-Poland 24, 253 (2006) Google Scholar

  • [30] S.Ch. Hwang, G.M. Choi, Solid State Ionics 179, 1042 (2008) http://dx.doi.org/10.1016/j.ssi.2007.11.034CrossrefGoogle Scholar

  • [31] S.Ch. Hwang, G.M. Choi, Solid State Ionics 177, 3099 (2006) http://dx.doi.org/10.1016/j.ssi.2006.08.002CrossrefGoogle Scholar

About the article

Published Online: 2013-09-26

Published in Print: 2013-12-01


Citation Information: Open Chemistry, Volume 11, Issue 12, Pages 2088–2097, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-013-0332-2.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sh. M. Khaliullin, V. D. Zhuravlev, O. V. Russkikh, A. A. Ostroushko, and V. G. Bamburov
International Journal of Self-Propagating High-Temperature Synthesis, 2015, Volume 24, Number 2, Page 83

Comments (0)

Please log in or register to comment.
Log in