Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2018: 163.25

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 11, Issue 12

Issues

Volume 13 (2015)

Biosorption of reactive dye from aqueous media using Saccharomyces cerevisiae biomass. Equilibrium and kinetic study

Daniela Suteu
  • Faculty of Chemical Engineering and Environmental Protection, Department of Organic Biochemical and Food Engineering, “Gh.Asachi” Technical University of Iasi, 700050, Iassy, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexandra Blaga
  • Faculty of Chemical Engineering and Environmental Protection, Department of Organic Biochemical and Food Engineering, “Gh.Asachi” Technical University of Iasi, 700050, Iassy, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mariana Diaconu
  • Faculty of Chemical Engineering and Environmental Protection, Department of Environmental Engineering and Management, “Gh.Asachi” Technical University of Iasi, 700050, Iassy, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Teodor Malutan
  • Faculty of Chemical Engineering and Environmental Protection, Department of Natural and Synthetic Polymers, “Gh.Asachi” Technical University of Iasi, 700050, Iassy, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-26 | DOI: https://doi.org/10.2478/s11532-013-0338-9

Abstract

The biosorption Brilliant Red HE-3B reactive dye by nonliving biomass, Saccharomyces cerevisiae, in batch procedure was investigated. Equilibrium experimental data were analyzed using Freundlich, Langmuir and Dubinin — Radushkevich isotherm models and obtained capacity about 104.167 mg g−1 at 20°C. The batch biosorption process followed the pseudo-second order kinetic model. The multi-linearity of the Weber-Morris plot suggests the presence of two main steps influencing the biosorption process: the intraparticle diffusion (pore diffusion), and the external mass transfer (film diffusion). The results obtained in batch experiments revealed that the biosorption of reactive dye by biomass is an endothermic physical-chemical process occurring mainly by electrostatic interaction between the positive charged surface of the biomass and the anionic dye molecules. The biosorption mechanism was confirmed by FT-IR spectroscopy and microscopy analysis

Keywords: Saccharomyces cerevisiae biomass; Reactive dye; Biosorption; Equilibrium; Aqueous medium

  • [1] D. Suteu, C. Zaharia, A. Muresan, R. Muresan, A. Popescu, Environ. Eng. Manag. J., 8, 1097 (2009) Google Scholar

  • [2] D. Suteu, C. Zaharia, D. Bilba, A. Muresan, R. Muresan, A. Popescu, Industria Textila, 60, 254 (2009) Google Scholar

  • [3] Y. Anjaneyulu, C.N. Sreedhara, Rev. Environ. Sci. Bio.Technol. 4, 245 (2005) http://dx.doi.org/10.1007/s11157-005-1246-zCrossrefGoogle Scholar

  • [4] D. Suteu, C. Zaharia, T. Malutan, in: R.J. Paterson (Ed.), Lignin. Properties and Applications in Biotechnology and Bioenergy (Nova Science Publishers, New York, 2011) Google Scholar

  • [5] D. Suteu, A.C. Blaga, C. Zaharia, in: C. Zaharia (Ed.), Current topics, concepts and research priorities in environmental chemistry (“A.I. Cuza” University Publishing House, Iasi, Romania, 2012) Google Scholar

  • [6] B. Volesky, Water Research, 41, 4017 (2007) http://dx.doi.org/10.1016/j.watres.2007.05.062CrossrefGoogle Scholar

  • [7] R.C. Oliveira, M.C. Palmieri, O. Garcia Jr, in: S.S. Shaukat (Ed.), Progress in Biomass and Bioenergy Production (INTECH Publisher, Rijeka, Croatia, 2011) Google Scholar

  • [8] Y. Hannachi, Journal of Environmental Engineering and Landscape Management 19(3), 208 (2011) http://dx.doi.org/10.3846/16486897.2011.602556CrossrefGoogle Scholar

  • [9] K. Chojnacka, Environ. Internat. 36, 299 (2010) http://dx.doi.org/10.1016/j.envint.2009.12.001CrossrefGoogle Scholar

  • [10] Y. Feng, H. Zhou, G. Liu, J. Qiao, J. Wang, H. Lu, L. Yang, Y. Wu, Biores. Technol. 125, 138 (2012) http://dx.doi.org/10.1016/j.biortech.2012.08.128CrossrefGoogle Scholar

  • [11] G.M. Gadd, J. Chem. Technol. Biotechnol. 84, 13 (2009) http://dx.doi.org/10.1002/jctb.1999CrossrefGoogle Scholar

  • [12] P. Kaushik, A. Malik, Environ. Internat. 35, 127 (2009) http://dx.doi.org/10.1016/j.envint.2008.05.010CrossrefGoogle Scholar

  • [13] T. Li, J.T. Guthrie, J. Water Resource and Protection 2, 77 (2010) http://dx.doi.org/10.4236/jwarp.2010.21009CrossrefGoogle Scholar

  • [14] N. Daneshvar, M. Ayazloo, A.R. Khatae, M. Pourhassan, Bioresource Technol. 98(6), 1176 (2007) http://dx.doi.org/10.1016/j.biortech.2006.05.025CrossrefGoogle Scholar

  • [15] E.S. Bireller, P. Aytar, S. Gedikli, A. Cabuk, JSIR 71, 632 (2012) Google Scholar

  • [16] T.V. Tamachandra, N. Ahalya, R.D. Kanamadi, CES Technical report 110, 1 (2010) Google Scholar

  • [17] H. Wang, X.W. Zheng, J.Q. Su, Y. Tian, X.J. Xiong, T.L. Zheng, J. Hazard. Mater. 171, 654 (2009) http://dx.doi.org/10.1016/j.jhazmat.2009.06.050CrossrefGoogle Scholar

  • [18] C. Zaharia, D. Suteu, in: T. Puzyn, A. Mostrag-Szlichtyng (Eds.), Organic Pollutants Ten Years After the the Stockholm Convention — Environmental and analytical Update (INTECH Publisher, Rijeka, Croatia, 2012) Google Scholar

  • [19] C. Zaharia, D. Suteu, A. Muresan, Environ. Eng. Manag. J. 11, 493 (2012) Google Scholar

  • [20] A. Baban, A. Yediler, N.K. Ciliz, Clean: Air, Soil, Water, 38, 84 (2010) http://dx.doi.org/10.1002/clen.200900102CrossrefGoogle Scholar

  • [21] R. Babu, A.K. Parande, S. Raghu, T.P. Kumar, J. Cotton Sci. 11, 141 (2007) Google Scholar

  • [22] A. Medina-Moreno, R. Pérez-Cadena, A. Jiménez-González, A. Téllez-Jurado, C.A. Lucho-Constantino, Biores. Technol. 123, 452 (2012) http://dx.doi.org/10.1016/j.biortech.2012.06.097CrossrefGoogle Scholar

  • [23] D. Suteu, A.C. Blaga, C. Zaharia, The 16-th International Conference of Inventors, June, 13th–15th, 2012 (Performnatica Publishing House, Iasi, Romania, 2012) 463 Google Scholar

  • [24] G. Crini, P. Badot, Prog. Polym. Sci. 33, 399 (2008) http://dx.doi.org/10.1016/j.progpolymsci.2007.11.001CrossrefGoogle Scholar

  • [25] V. Vadivelan, K.V. Kumar, J. Colloid. Interface Sci. 286, 90 (2005) http://dx.doi.org/10.1016/j.jcis.2005.01.007CrossrefGoogle Scholar

  • [26] D. Caparkaya, L. Cavas, Acta Chim.Slov. 55, 547 (2008) Google Scholar

  • [27] Y.S. Ho, Carbon 42, 2113 (2004) http://dx.doi.org/10.1016/j.carbon.2004.03.033CrossrefGoogle Scholar

  • [28] S.C. Tsai, K.W. Juang, J. Radioanal. Nucl. Chem. 243, 741 (2000) http://dx.doi.org/10.1023/A:1010694910170CrossrefGoogle Scholar

  • [29] A. Galichet, G.D. Sockalingum, A. Belarbi, M. Manfait, FEMS Microbiology Letters 197, 179 (2001) http://dx.doi.org/10.1111/j.1574-6968.2001.tb10601.xCrossrefGoogle Scholar

  • [30] R. Dhankhar, A. Hooda, R. Solanki, A.P. Sainger, Internat. J. of Eng. Sci. and Technol. 3, 5397 (2011) Google Scholar

  • [31] Y. Wu, L. Jiang, X. Mi, B. Li, S. Feng, Korean J. Chem. Eng. 28, 895 (2011) http://dx.doi.org/10.1007/s11814-010-0429-7CrossrefGoogle Scholar

  • [32] Y. Wu, Y. Hu, Z.W. Xie, S. Feng, B. Li, X.M. Mi, Appl. Biochem. Biotechnol. 163, 882 (2011) http://dx.doi.org/10.1007/s12010-010-9092-zCrossrefGoogle Scholar

  • [33] Z. Aksu, G. Domnez, Chemosphere 50, 1075 (2003) http://dx.doi.org/10.1016/S0045-6535(02)00623-9CrossrefGoogle Scholar

  • [34] F. Gonen, Z. Aksu, Enzyme Microbial. Technology. 45, 15 (2009) http://dx.doi.org/10.1016/j.enzmictec.2009.03.006CrossrefGoogle Scholar

  • [35] S. Tunali Akar, T. Akar, A. Cabuk, Brazilian J. Chem. Eng. 26(2), 399 (2009) http://dx.doi.org/10.1590/S0104-66322009000200018CrossrefGoogle Scholar

  • [36] S. Ramalakshmi, K. Muthuchelian, K. Swaminathan, J. Biosci. Res. 2(4), 239 (2011) Google Scholar

  • [37] V. Dulman, S. Cucu-Man, O. Radasanu, S. Surdu, Scientific Annals of A.I.Cuza University (Iasi, Romania), VII(2), 257 (2000) Google Scholar

  • [38] M.M. Dubinin, L.V. Radushkevich, Proc. Acad. Sci USSR, Phys Chem., Sect. 55, 331 (1947) Google Scholar

  • [39] Y. Bulut, H. Aidin, Desalination 194, 259 (2006) http://dx.doi.org/10.1016/j.desal.2005.10.032CrossrefGoogle Scholar

  • [40] D.I. Mall, V. Srivastava, N.K. Agarwal, Dyes and Pigments 69, 210 (2006) http://dx.doi.org/10.1016/j.dyepig.2005.03.013CrossrefGoogle Scholar

  • [41] R. Han, J. Zhang, P. Han, Y. Wang, Z. Zhao, M. Tang, Chem. Eng. J. 145, 496 (2009) http://dx.doi.org/10.1016/j.cej.2008.05.003CrossrefGoogle Scholar

  • [42] G.M. Walker, L. Hansen, J.A. Hanna, S.J. Allen, Water Res. 37, 2081 (2003) http://dx.doi.org/10.1016/S0043-1354(02)00540-7CrossrefGoogle Scholar

About the article

Published Online: 2013-09-26

Published in Print: 2013-12-01


Citation Information: Open Chemistry, Volume 11, Issue 12, Pages 2048–2057, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-013-0338-9.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Weihua Xu, Hao Jian, Yunguo Liu, Guangming Zeng, Xin Li, Yanling Gu, and Xiaofei Tan
Bioremediation Journal, 2015, Volume 19, Number 4, Page 259
[2]
Gloria Sánchez-Galván and Pedro A. Ramírez-Núñez
Water, Air, & Soil Pollution, 2014, Volume 225, Number 7

Comments (0)

Please log in or register to comment.
Log in