Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2018: 163.25

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 11, Issue 12

Issues

Volume 13 (2015)

Corrosion depth profiles of nitrided titanium alloy in acidified sulphate solution

Karina Jagielska-Wiaderek
  • Division of Chemistry, Faculty of Materials Engineering and Applied Physics, Czestochowa University of Technology, 42-200, Czestochowa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Henryk Bala
  • Division of Chemistry, Faculty of Materials Engineering and Applied Physics, Czestochowa University of Technology, 42-200, Czestochowa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tadeusz Wierzchon
Published Online: 2013-09-26 | DOI: https://doi.org/10.2478/s11532-013-0342-0

Abstract

Thick (400 µm) glow-discharge nitrided layers, TiN+Ti2N + αTi(N) type, have been produced on the Ti-1Al-1Mn titanium alloy. Using a progressive thinning method, the polarization characteristics at different depths of nitrided layers have been measured. From the plots of obtained potentiodynamic polarization curves the depth profiles of characteristic anodic and cathodic currents (at potentials corresponding to (a) hydride formation, (b) hydrogen evolution, (c) primary passivation, (d) oxygen evolution and (e) secondary passivation) as well as polarization resistance have been determined in 0.5 M Na2SO4 solution acidified to pH = 2. The anomalously high slope of the polarization curves in the cathodic region has been ascribed to the formation of titanium hydride. It has been shown that outer nitrided layers (up to 25 µm) exhibit excellent acid corrosion resistance owing to strong inhibition of the anodic process by TiN phase. Corrosion resistance of deeper situated layers gradually decreases and at depths of 250–370 µm the corrosion process is accelerated by presence of TiO2 precipitations. Nitrided layers, unlike the alloy core, allow oxygen evolution on the oxy-nitrided surface at potential of +1.6 V and at more positive potentials gradual transformation of the surfacial film into TiO2 takes place. Secondary passivation on nitrided titanium is less efficient than that in the absence of Ti-N species.

Keywords: Titanium; Nitriding; Electrochemical corrosion; Depth-profile

  • [1] P.M. Perillo, Corrosion 62, 182 (2006) http://dx.doi.org/10.5006/1.3278263CrossrefGoogle Scholar

  • [2] D. Starosvetsky, I. Gotman, Biomaterials 22, 1853 (2001) http://dx.doi.org/10.1016/S0142-9612(00)00368-9CrossrefGoogle Scholar

  • [3] A. Pankiew, W. Bunjongpru, N. Somwang, S. Porntheeraphat, S. Sopitpan, J. Nukaew, C. Hruanun, A. Poyai, J. Microsc. Soc.-Thailand 24(2), 103 (2010) Google Scholar

  • [4] J. Piippo, B. Elsener, H. Bohni, Surf. Coat. Tech. 61, 43 (1993) http://dx.doi.org/10.1016/0257-8972(93)90200-8CrossrefGoogle Scholar

  • [5] B.N. Arzamasov, L.G. Kirichenko, A.N. Kuznetsov, T.V. Soloveva, Met. Sci. Heat Treat. 40, 378 (1998) http://dx.doi.org/10.1007/BF02466244CrossrefGoogle Scholar

  • [6] S. Szmukler-Moncler, M. Bischof, R. Nedir, M. Ermrich, Chin, Oral Impl. Res. 21, 944 (2010) Google Scholar

  • [7] K. Videm, S. Lamolle, M. Monjo, J.E. Ellingsen, S.P. Lyngatadaas, H.J. Haugen, Appl.Suf. Sci. 255, 3011 (2008) http://dx.doi.org/10.1016/j.apsusc.2008.08.090CrossrefGoogle Scholar

  • [8] A. Zhecheva, W. Sha, S. Malinov, A. Long, Surf. Coat. Tech. 200, 2192 (2005) http://dx.doi.org/10.1016/j.surfcoat.2004.07.115CrossrefGoogle Scholar

  • [9] H.J. Goldschmidt, Interstitial Alloys (Butterworths, London, 1967) Google Scholar

  • [10] S. Malinov, A. Zhecheva, W. Sha, Proc. 13th IFHTSE Congress (ASM International, Materials Park, OH, 2003) 344 Google Scholar

  • [11] A. Czyrska-Filemonowicz, P.A. Buffat, M. Lucki, T. Moskalewicz, W. Rakowski, J. Lekki, T. Wierzchon, Acta Mater. 53(16), 4367 (2005) http://dx.doi.org/10.1016/j.actamat.2005.05.035CrossrefGoogle Scholar

  • [12] E. Czarnowska, M. Ossowski, J. Morgiel, T. Wierzchon, J. Nanosci. Nanotechnol. 11, 8917 (2011) http://dx.doi.org/10.1166/jnn.2011.3474CrossrefGoogle Scholar

  • [13] T.P. Hoar, Platinum Met. Rev. 4, 59 (1960) Google Scholar

  • [14] V.A. Lavrenko, V.A. Shvets, N.V. Boshitskaya, G.N. Makarenko, Powder Metal. Met. Ceram. 40, 630 (2001) http://dx.doi.org/10.1023/A:1015296323497CrossrefGoogle Scholar

  • [15] A.I. Shcherbakov, Zashchita Met. 38, 174 (2002) (in Russian) Google Scholar

  • [16] M.C. Burrell, N.R. Armstrong, Langmuir 2, 37 (1986) http://dx.doi.org/10.1021/la00067a006CrossrefGoogle Scholar

  • [17] I. Gurappa, Mater. Charact. 51, 131 (2003) http://dx.doi.org/10.1016/j.matchar.2003.10.006CrossrefGoogle Scholar

  • [18] M.J. Donachie, Jr., Titanium — A Technical Guide, 2nd edition (ASM International, Materials Park, USA, 2000) Google Scholar

  • [19] M.J. Munoz-Portero, J. Garcia-Anton, J.L. Guinon, R. Leiva_Garcia, Corros. Sci. 53, 1440 (2011) http://dx.doi.org/10.1016/j.corsci.2011.01.013CrossrefGoogle Scholar

  • [20] A.I. Shcherbakov, I.V. Kasatkina, Zashchita Met. 37, 435 (2001) (in Russian) Google Scholar

  • [21] M.S. Khoma, O.M. Romaniv, O.I. Kuntyi, A.I. Tymchyshyn, Mater. Sci. 36, 780 (2000) http://dx.doi.org/10.1023/A:1011332513343CrossrefGoogle Scholar

  • [22] R. Karpagavalli, A. Zhou, P. Chellamuthu, K. Nguyen, J. Biomed. Mater. Res., Part A 83A, 1087 (2007) http://dx.doi.org/10.1002/jbm.a.31447CrossrefGoogle Scholar

  • [23] L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim, H.E. Kim, S.J. Heo, J.Y. Koak, Biomaterials 25, 2867 (2004) http://dx.doi.org/10.1016/j.biomaterials.2003.09.048CrossrefGoogle Scholar

  • [24] H.W. Kim, Y.H. Koh, L.H. Li, S. Lee, H.E. Kim, Biomaterials 25, 2533 (2004) http://dx.doi.org/10.1016/j.biomaterials.2003.09.041CrossrefGoogle Scholar

  • [25] W. Han, Y. Wang, Y. Zheng, Adv. Mater. Res. 79–82, 389 (2009) http://dx.doi.org/10.4028/www.scientific.net/AMR.79-82.389CrossrefGoogle Scholar

  • [26] R. Carbone, I. Marangi, A. Zanardi, L. Giorgetti, E. Chierici, G. Berlanda, A. Podestà, F. Fiorentini, G. Bongiorno, P. Piseri, P.G. Pelicci, P. Milani, Biomaterials 27, 3221 (2006) http://dx.doi.org/10.1016/j.biomaterials.2006.01.056CrossrefGoogle Scholar

  • [27] W. Wilhelmsen, A.P. Grande, Electrochim. Acta 35, 1913 (1990) http://dx.doi.org/10.1016/0013-4686(90)87100-GCrossrefGoogle Scholar

  • [28] A. Rauscher, Z. Lukacs, Mater. Corros. 39, 280 (1988) http://dx.doi.org/10.1002/maco.19880390603CrossrefGoogle Scholar

  • [29] Z.A. Foroulis, Mater. Corros. 30, 477 (1979) http://dx.doi.org/10.1002/maco.19790300703CrossrefGoogle Scholar

  • [30] M. Stern, H. Wissenberg, J. Electrochem. Soc. 106, 755 (1959) http://dx.doi.org/10.1149/1.2427492CrossrefGoogle Scholar

  • [31] M. Stern, H. Wissenberg, J. Electrochem. Soc. 106, 759 (1959) http://dx.doi.org/10.1149/1.2427493CrossrefGoogle Scholar

  • [32] K. Jagielska-Wiaderek, H. Bala, P. Wieczorek, J. Rudnicki, D. Klimecka-Tatar, Arch. Metall. Mater. 54, 115 (2009) Google Scholar

  • [33] K. Jagielska-Wiaderek, H. Bala, P. Wieczorek, J. Rudnicki, Arch. Metall. Mater. 55, 515 (2010) Google Scholar

  • [34] K. Jagielska-Wiaderek, Arch. Metall. Mater. 57, 646 (2012) Google Scholar

  • [35] Shreir’s Corrosion, Electrochemical Methods, 4th edition (Elsevier, UK, 2010) Vol. 2, 1358 Google Scholar

  • [36] H. Bala, L. Adamczyk, E. Owczarek, T. Gruetzner, B.Ch. Seyfang, Ochr. przed Korozja 55, 460 (2012) (in Polish) Google Scholar

  • [37] A.N. Krasilshchikov, Zh. Fiz. Khim. 37, 531 (1963) (in Russian) Google Scholar

  • [38] M.E. Lyons, R.L. Doyle, M.P. Brandon. Phys. Chem. Chem. Phys. 13(48), 21530 (2011) http://dx.doi.org/10.1039/c1cp22470kCrossrefGoogle Scholar

  • [39] Shreir’s Corrosion, Corrosion of Titanium and its Alloys, 4th edition (Elsevier, UK, 2010) Vol. 3, 2042 Google Scholar

About the article

Published Online: 2013-09-26

Published in Print: 2013-12-01


Citation Information: Open Chemistry, Volume 11, Issue 12, Pages 2005–2011, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-013-0342-0.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in