Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 11, Issue 3


Volume 13 (2015)

Photocatalytic properties of ZnO/TiO2 powders obtained via combustion gel method

Albena Bachvarova-Nedelcheva / Reni Iordanova / Angelina Stoyanova / Radka Gegova / Yanko Dimitriev / Alexandre Loukanov
Published Online: 2012-12-28 | DOI: https://doi.org/10.2478/s11532-012-0167-2


Abstract The present study is a continuation of our previous investigations on the ZnO-TiO2 system. By applying different sol-gel methods we proved that the type of precursor and the order of adding the components influence the microstructure of the final product. This study focuses on the combustion sol-gel synthesis and photocatalytic properties of nanosized (∼7-20 nm) ZnO-TiO2 powders. The photocatalytic tests were performed toward two model organic dyes, Malachite Green and Reactive Black 5, in the UV and Vis region. For synthesis of ZnO/TiO2 powders, different precursors such as Zn(NO3)2·6H2O, Zn(CH3COO)2·2H2O, Ti(OC2H5)4 and Ti(OC4H9)4 were used. During the combustion process various phases (ZnO, TiO2 — anatase and rutile, ZnTiO3) were obtained. The structure and morphology of the resulting particles were characterized by XRD and SEM analysis. All samples exhibited a good photocatalytic activity in both UV and Vis regions. Graphical abstract

Keywords: Precursor; Gel combustion method; TiO2/ZnO composites

  • [1] O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33 (2004) http://dx.doi.org/10.1016/j.progsolidstchem.2004.08.001CrossrefGoogle Scholar

  • [2] U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogbrevean, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. 98, 41301 (2005) http://dx.doi.org/10.1063/1.1992666CrossrefGoogle Scholar

  • [3] A. Stoyanova, M. Sredkova, A. Bachvarova-Nedelcheva, R. Iordanova, Y. Dimitriev, H. Hitkova, Tz. Iliev, Optoelectronics and Advanced Materials-rapid communications 4(12), 2059 (2010) Google Scholar

  • [4] A. Shalaby, Y. Dimitriev, R. Iordanova, A. Bachvarova-Nedelcheva, Tz. Iliev, Journal of the University of Chemical Technology and Metallurgy 46(2), 137 (2011) Google Scholar

  • [5] Y. Dimitriev, Y. Ivanova, A. Staneva, L. Alexandrov, M. Mancheva, R. Yordanova, C. Dushkin, N. Kaneva, C. Iliev, Journal of the University of Chemical Technology and Metallurgy 44(3), 235 (2009) Google Scholar

  • [6] D. Li, H. Haneda, Chemosphere 51, 129 (2003) http://dx.doi.org/10.1016/S0045-6535(02)00787-7CrossrefGoogle Scholar

  • [7] G. Marci, V. Augugliaro, M.J. Lopez-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R.J.D. Tilley, A.M. Venezia, Journal of Physical Chemistry B 105, 1033 (2001) Google Scholar

  • [8] K.C. Patil, S.T. Aruna, S. Ekambaram, Curr. Opin. Solid State Mater. Sci. 2, 158 (1997) http://dx.doi.org/10.1016/S1359-0286(97)80060-5CrossrefGoogle Scholar

  • [9] A.G. Merzhanov, A.S. Mukasyan, Combustion of solid flame (Torus Press, Moscow, 2007) 336 Google Scholar

  • [10] A.S. Mukasyan, K. Martirosyan (Eds.), Combustion of heterogeneous systems: fundamentals and applications for material synthesis (Transworld Research Network, Kerala, India, 2007) 234 Google Scholar

  • [11] A.A. Borisov, L. De Luca, A.G. Merzhanov (Eds.), Self-propagating high temperature synthesis of materials (Taylor and Francis, New York, 2002) 337 Google Scholar

  • [12] A.M. Segadaes, Eur. Ceram. News Lett. 9, 1 (2006) Google Scholar

  • [13] A. Varma, V. Diakov, E. Shafirovich, AIChE J. 51, 2876 (2005) http://dx.doi.org/10.1002/aic.10697CrossrefGoogle Scholar

  • [14] A.S. Mukasyan, P. Epstein, P. Dinka, Proceedings of the Combustion Institute 31, 1789 (2007) http://dx.doi.org/10.1016/j.proci.2006.07.052CrossrefGoogle Scholar

  • [15] A.G. Merzhanov, I.P. Borovinskaya, A.E. Sytchev, In: J.F. Baumard (Ed.), SHS of nano-powders. Lessons in nanotechnology from traditional materials to advanced ceramics (Techna Group Srl, Dijon, France, 2005) 1–27 Google Scholar

  • [16] A.S. Mukasyan, A.S. Rogachev, Prog. Energ. Comb. Sci. 34, 377 (2008) http://dx.doi.org/10.1016/j.pecs.2007.09.002CrossrefGoogle Scholar

  • [17] I.A. Filimonov, N.I. Kidin, Comb. Explos. Shock Waves 41, 639 (2005) http://dx.doi.org/10.1007/s10573-005-0078-zCrossrefGoogle Scholar

  • [18] S. Ekambaram, K.C. Patil, M. Maaza, J. Alloys Comp. 393, 81 (2005) http://dx.doi.org/10.1016/j.jallcom.2004.10.015CrossrefGoogle Scholar

  • [19] K.C. Patil, S.T. Aruna, T. Mimami, Combustion synthesis: an update, Current Opinion in Solid State and Materials Science 6, 507 (2002) http://dx.doi.org/10.1016/S1359-0286(02)00123-7CrossrefGoogle Scholar

  • [20] Y. Kitamura, N. Okinaka, T. Shibayama et al., Powder Technology 176, 93 (2007) http://dx.doi.org/10.1016/j.powtec.2007.02.009CrossrefGoogle Scholar

  • [21] A. Sedghi, S. Baghshahi et al., Digest Journal of Nanomaterials and Biostructures 6(4), 1457 (2011) Google Scholar

  • [22] Ch.-Sh. Lin, Ch.-Ch. Hwang et al., Mater. Sci. and Engineering B140, 31 (2007) http://dx.doi.org/10.1016/j.mseb.2007.03.023CrossrefGoogle Scholar

  • [23] S. Park, J.C. Lee, W. Lee et al., J. Mater. Sci. 38, 4493 (2003) http://dx.doi.org/10.1023/A:1027329501367CrossrefGoogle Scholar

  • [24] J. Tian, J. Wang, J. Dai et al., Surface & Coatings Technology 204, 723 (2009) http://dx.doi.org/10.1016/j.surfcoat.2009.09.028CrossrefGoogle Scholar

  • [25] G. Marci, V. Augugliaro, M. Lopez-Munoz et al., J. Phys. Chem. B. 105, 1026–1032 (2001) http://dx.doi.org/10.1021/jp003172rCrossrefGoogle Scholar

  • [26] C. Shifu, Z. Wei, L. Wei et al., Appl. Surf. Sci. 255, 2478 (2008) http://dx.doi.org/10.1016/j.apsusc.2008.07.115CrossrefGoogle Scholar

  • [27] X. Xu, J. Wang, J. Tian et al., Ceram. Intern. 37, 2201 (2011) http://dx.doi.org/10.1016/j.ceramint.2011.03.067CrossrefGoogle Scholar

  • [28] M.J. Pawar, V.B. Nimbalkar, Res. J. Chem. Sci. 2(1), 32 (2012) Google Scholar

  • [29] S. Ekambaram, Y. Iikubo, A. Kudo, J. Alloys Compds. 433, 237 (2007) http://dx.doi.org/10.1016/j.jallcom.2006.06.045CrossrefGoogle Scholar

  • [30] R. Nagaraja, N. Kottam, C. R. Girija et al., Powder Technology 215–216, 91 (2012) http://dx.doi.org/10.1016/j.powtec.2011.09.014CrossrefGoogle Scholar

About the article

Published Online: 2012-12-28

Published in Print: 2013-03-01

Citation Information: Open Chemistry, Volume 11, Issue 3, Pages 364–370, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-012-0167-2.

Export Citation

© 2012 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alexandre R. Loukanov, Alexei G. Basnakian, Ryuzo Kawamura, Hibiki Udono, Chavdar K. Filipov, Alena V. Savenka, Todd Fite, and Seiichiro Nakabayashi
The Journal of Physical Chemistry C, 2018
A. Mazabuel-Collazos and J. E. Rodríguez-Páez
Journal of Inorganic and Organometallic Polymers and Materials, 2018
Budigi Lokesh, Nasina Madhusudhana Rao, Shaik Kaleemulla, and Amaravadi Sivakumar
Chemical Papers, 2015, Volume 69, Number 11

Comments (0)

Please log in or register to comment.
Log in