Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year

IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2015: 0.346
Source Normalized Impact per Paper (SNIP) 2015: 0.841

Open Access
See all formats and pricing
In This Section
Volume 11, Issue 5 (May 2013)


Investigation of SOFC material properties for plant-level modeling

Jakub Kupecki
  • Fuel Cell Department, Institute of Power Engineering, 02-981, Warsaw, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, 00-665, Warsaw, Poland
  • Email:
/ Jarosław Milewski
  • Institute of Heat Engineering, Warsaw University of Technology, 00-665, Warsaw, Poland
  • Email:
/ Janusz Jewulski
  • Fuel Cell Department, Institute of Power Engineering, 02-981, Warsaw, Poland
  • Email:
Published Online: 2013-02-27 | DOI: https://doi.org/10.2478/s11532-013-0211-x


This article describes results of a recent study of SOFC (Solid Oxide Fuel Cell) material properties using a numerical tool. The created model was validated against experimental data collected for two different solid oxide fuel cells. With focus on ionic and electronic conductivities, temperature influence was investigated. Results are presented, compared with available data, and discussed. Model of a micro-CHP (Combined Heat and Power) unit based on a SOFC stack was used for evaluation of system performance with different cells. On-site generated bio-syngas was considered as a fuel fed for the unit. The overall system efficiency was analyzed using an Aspen HYSYS modeling environment. Properties of two generic electrolyte materials were implemented in the models for evaluation of a co-generative unit operation. Electrical and overall efficiencies of systems based on those cells were compared and differences were observed. Micro-scale power units with fuel cells are a promising technology for highly efficient distributed cogeneration. As it was concluded, selection of a proper cell is crucial to assure high system efficiency.

Keywords: SOFC; Modeling; Material properties; Micro-CHP

  • [1] Directive 2004/8/EC of the European Parliament and of the Council of 11 February 2004 on the promotion of cogeneration based on a useful heat demand in the internal energy market (European Commission, Strasbourg, 2004)

  • [2] L. Barelli, G. Bidini, F. Gallorini, A. Ottaviano, Int. J. Hydrogen Energy36, 3206 (2011)

  • [3] J. Kupecki, J. Jewulski, K. Badyda, Rynek Energii 97, 157 (2011) (in Polish)

  • [4] E.I. Zolias, N. Lymberopoulos (Eds.), Autonomous Power Systems (Springer-Verlag, London, 2008)

  • [5] T. Tanaka, Y. Inui, A. Urata, T. Kanno, Energy Conversion and Management 48, 1491 (2007) http://dx.doi.org/10.1016/j.enconman.2006.11.019 [Crossref]

  • [6] M. Iwata, T. Hikosaka, M. Morita, T. Iwanari, K. Ito, K. Onda et al., Solid State Ionics 132, 297 (2000) http://dx.doi.org/10.1016/S0167-2738(00)00645-7 [Crossref]

  • [7] K.J. Kattke, R.J. Braun, A.M. Colclasure, G. Goldin G, Journal of Power Sources 196, 3790 (2011) http://dx.doi.org/10.1016/j.jpowsour.2010.12.070 [Crossref]

  • [8] J. Milewski, A. Miller, J. Salacinski, Int. J. Hydrogen Energy 32, 687 (2007) http://dx.doi.org/10.1016/j.ijhydene.2006.08.007 [Crossref]

  • [9] Y. Jiang, A.V. Virkar, J. of Electrochemical Soc. Vol 148 (2001)

  • [10] US Department of Energy, National Energy Technology Laboratory, Fuel Cell Handbook, 7th edition (EG&G Technical Services Inc., Morgantown, 2004)

  • [11] J. Kupecki, Integrated Gasification SOFC Hybrid Power System Modeling: Novel numerical approach to modeling of advanced power systems, (VDM Verlag Dr. Muller, Saarbrucken, 2010)

  • [12] H. Yokokawa, Annual Review of Materials Research 33, 581 (2003) http://dx.doi.org/10.1146/annurev.matsci.33.022802.093856 [Crossref]

  • [13] R. O’Hayre, S.W. Cha, W. Colella, F. Prinz, Fuel cell fundamentals (Wiley, New York, 2005)

  • [14] J. Milewski, J. Lewandowski, Archives of Thermodynamics 30, 4 (2009)

  • [15] J. Staniforth, R.M. Ormerod, Ionics 9(5–6), 336 (2003) http://dx.doi.org/10.1007/BF02376583 [Crossref]

  • [16] A. Wojcik, H. Middleton, I, Damopoulos, J. Van Heerle, J. of Power Sources 118(1–2), 342 (2003) http://dx.doi.org/10.1016/S0378-7753(03)00083-1 [Crossref]

  • [17] E.P. Murray, S.J. Harris, H. Jen, J. of Electrochemical Soc. 149(9), A1127 (2002) http://dx.doi.org/10.1149/1.1496484 [Crossref]

  • [18] J. Kupecki, J. Jewulski, J. Milewski, In: C. Aydinalp (Ed.), Clean Energy for Better Environment (InTech, Rijeka, 2012) 53

  • [19] A. Virkar, J. Power Sources 147, 8 (2005) http://dx.doi.org/10.1016/j.jpowsour.2005.01.038 [Crossref]

  • [20] K. Yashiro, T. Suzuki, A. Kaimai, H. Matsumoto, Y. Nigara, T. Kawada, J. Mizusaki, J. Sfeir, J. Van Herle, Solid State Ionics 175, 341 (2004) http://dx.doi.org/10.1016/j.ssi.2004.01.066 [Crossref]

  • [21] T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994) http://dx.doi.org/10.1021/ja00088a016 [Crossref]

  • [22] C.B. Choudhary, H.S. Maiti, E.C. Subbarao, Solid Electrolytes and Their Applications (Plenum Press, New York, 1980)

  • [23] J. Cheng, P. Shi, H. Zhong, B. Wang, Key Eng. Mater. 336–338, 444 (2007) http://dx.doi.org/10.4028/www.scientific.net/KEM.336-338.444 [Crossref]

  • [24] K. Kawamura, K. Watanabe, T. Hiramatsu, A. Kaimai, Y. Nigara, T. Kawada, J. Mizusaki, Solid State Ionics 144, 11 (2001) http://dx.doi.org/10.1016/S0167-2738(01)00892-X [Crossref]

  • [25] Q. Li, V. Thangadurai, Fuel Cells 9, 684 (2009) http://dx.doi.org/10.1002/fuce.200900044 [Crossref]

  • [26] J. Van Herle, D. Seneviratne, A. J. McEvoy, J. Eur. Ceram. Soc. 19, 837 (1999) http://dx.doi.org/10.1016/S0955-2219(98)00327-6 [Crossref]

  • [27] J. Milewski, Fuel Cells 12, 709 (2012) http://dx.doi.org/10.1002/fuce.201100150 [Crossref]

  • [28] J. Milewski, K. Swirski, M. Santarelli, P. Leone (Eds.), Advanced Methods of Solid Oxide Fuel Cell Modeling (Springer-Verlag, London Ltd., 2011)

  • [29] H.C. Park, A.V. Virkar, J. Power Sources 186, 133 (2009) http://dx.doi.org/10.1016/j.jpowsour.2008.09.080 [Crossref]

  • [30] J. Ding, J. Liu, Solid State Ionic 179, 1246 (2008) http://dx.doi.org/10.1016/j.ssi.2008.01.094 [Crossref]

  • [31] T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, Y. Takita, Chem. Commun. 13, 1227 (1999) http://dx.doi.org/10.1039/a902899d [Crossref]

  • [32] J. Milewski, A. Miller, A. Dmowski, P. Biczel, Arch. Thermodynamics 30, 25 (2009)

  • [33] L. Nikonowicz, J. Milewski, J. Power Technologies 91, 82 (2011)

  • [34] A. Pramuanjaroenkij, S. Kakac, X.Y. Zhou, Int. J. Hydrogen Energy 33, 2547 (2008) http://dx.doi.org/10.1016/j.ijhydene.2008.02.043 [Crossref]

  • [35] Y. Xie, X. Xue, Int. J. Hydrogen Energy 34, 6882 (2009) http://dx.doi.org/10.1016/j.ijhydene.2009.06.034 [Crossref]

About the article

Published Online: 2013-02-27

Published in Print: 2013-05-01

Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-013-0211-x. Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jakub Kupecki, Marek Skrzypkiewicz, Michal Wierzbicki, and Michal Stepien
Energy Procedia, 2015, Volume 75, Page 2021
G. De Lorenzo and P. Fragiacomo
Energy Conversion and Management, 2015, Volume 93, Page 175

Comments (0)

Please log in or register to comment.
Log in