Jump to ContentJump to Main Navigation
Show Summary Details

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2015: 1.207
5-year IMPACT FACTOR: 1.272

SCImago Journal Rank (SJR) 2015: 0.346
Source Normalized Impact per Paper (SNIP) 2015: 0.841
Impact per Publication (IPP) 2015: 1.164

Open Access
Online
ISSN
2391-5420
See all formats and pricing



Select Volume and Issue
Loading journal volume and issue information...

Preparation of low initial expansion temperature expandable graphite and its flame retardancy for LLDPE

1227College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, People’ Republic of China

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Open Chemistry. Volume 11, Issue 6, Pages 953–959, ISSN (Online) 2391-5420, DOI: 10.2478/s11532-013-0227-2, March 2013

Publication History

Published Online:
2013-03-28

Abstract

To get expandable graphite (EG) flame retardant for Liner Low-Density Polyethylene (LLDPE) with low initial expansion temperature and high dilatability, the effects of various factors on dilatability were investigated including the dosages of oxidant KMnO4, intercalating reagent H2SO4, assistant intercalating reagent acetic acid (HAc) and reaction temperature. Feasible conditions were obtained according to the results of L9 (34) experiments and single factor experiments. EG with an initial expansion temperature of 160°C and expansion volume of 460 mL g−1 could be prepared according to the mass ratio of material graphite C: KMnO4: 100% H2SO4: HAc = 1.0: 0.4: 5.0: 1.0 (H2SO4 should be diluted to the mass concentration of 75% before the intercalation reaction); the reaction time was 1.0 hour at 25°C. It was found that reaction temperature and H2SO4 dosage were the most important influence factors for dilatability. The limiting oxygen index could be improved to 28.1% by adding 30% of the prepared EG to LLDPE, and the synergistic anti-flame capability of 20% EG with 10% Ammonium polyphosphate (APP) (I) can reach to 33.9%. According to thermal gravimetric and differential thermal analysis results, 70% LLDPE /10% APP (I) /20% EG synergistic anti-flame system shows higher residual carbon and thermal stability.

Keywords: Expandable graphite; Acetic acid; Initial expansion temperature; Expansion volume; Flame retardant

  • [1] X.Y. Pang, P. Lv, Y.S. Yang, H.L. Ren, F. Gong, E. J. Chem. 5, 149 (2008) http://dx.doi.org/10.1155/2008/941953 [CrossRef]

  • [2] M. Toyoda, M. Inagaki, Carbon. 38, 199 (2000) http://dx.doi.org/10.1016/S0008-6223(99)00174-8 [CrossRef]

  • [3] F.Y. Kang et al., New Carbon Mater. 18, 161 (2003)

  • [4] J.H. Li, Y.Z. Gao, S.F. Liu, L.N. Yang, J. Sichuan Univ. (Nat. Sci.) 44, 399 (2007)

  • [5] X.Y. Pang, R.N. Lin, Asian J. Chem. 22, 4469 (2010)

  • [6] S. Duquesne, M.L. Bras, S. Bourbigot, Fire and Mater. 27, 103 (2003) http://dx.doi.org/10.1002/fam.812 [CrossRef]

  • [7] M. Thirumal, D. Khastgir, N.K. Singha, J. Appl. Polym. Sci. 110, 2586 (2008) http://dx.doi.org/10.1002/app.28763 [CrossRef]

  • [8] R.C. Xie, B.J. Qu, Polym. Degrad. Stab. 71, 375 (2001) http://dx.doi.org/10.1016/S0141-3910(00)00188-9 [CrossRef]

  • [9] R.C. Xie, B.J. Qu, J. Appl. Polym. Sci. 80, 1190 (2001) http://dx.doi.org/10.1002/app.1203 [CrossRef]

  • [10] M. Modesti, A. Lorenzetti, F. Simioni, G. Camino, Polym. Degrad. Stab. 77, 195 (2002) http://dx.doi.org/10.1016/S0141-3910(02)00034-4 [CrossRef]

  • [11] M. Modesti, A. Lorenzetti, Polym. Degrad. Stab. 78, 167 (2002) http://dx.doi.org/10.1016/S0141-3910(02)00130-1 [CrossRef]

  • [12] M. Modesti, A. Lorenzetti, Polym. Degrad. Stab. 78, 341 (2002) http://dx.doi.org/10.1016/S0141-3910(02)00184-2 [CrossRef]

  • [13] M. Modesti, A. Lorenzetti, Eur. Polym. J. 39, 263 (2003) http://dx.doi.org/10.1016/S0014-3057(02)00198-2 [CrossRef]

  • [14] S. Duquesne, R. Delobel, M.L. Bras, G. Camino, Polym. Degrad. Stab. 77, 333 (2002) http://dx.doi.org/10.1016/S0141-3910(02)00069-1 [CrossRef]

  • [15] L. Shi et al., Polym. Int. 55, 862 (2006) http://dx.doi.org/10.1002/pi.2021 [CrossRef]

  • [16] X.C. Bian, J.H. Tang, Z.M. Li, Z.Y. Lu, A. Lu, J. Appl. Polym. Sci. 104, 3347 (2007) http://dx.doi.org/10.1002/app.25933 [CrossRef]

  • [17] L. Ye, X.Y. Meng, X. Ji, Z.M. Li, J.H. Tang, Polym. Degrad. Stab. 94, 971 (2009) http://dx.doi.org/10.1016/j.polymdegradstab.2009.03.016 [CrossRef]

  • [18] H.F. Zhu, Q.L. Zhu, J. Li, K. Tao, L.X. Xue, Q. Yan, Polym. Degrad. Stab. 96, 183 (2011) http://dx.doi.org/10.1016/j.polymdegradstab.2010.11.017 [CrossRef]

  • [19] Y. X. Huang, N.L. Zhou, L. Li, Y. Liu, S.H. Wei, J. Liu, J. Nanjing Norm. Univ. (Nat. Sci.). 28, 57 (2005)

  • [20] L. Wang, K.M. Song, S.H. Zhang, Q. Li, Y.P. Li, M. Liu. Bull. Chinese Ceram. Soc. 28, 844 (2009)

  • [21] L. Wang, K.M. Song, M.Y. Zhang, T. Feng, Non-Metallic Mines. 31, 19 (2008)

  • [22] X.Y. Pang, S.K. Zhi, Y.J. Su, L. Liu, Fang. Lin, J. Hebei Univ. (Nat. Sci.) 31, 497 (2011)

  • [23] A.H. Yan, Z.Q. Zhou, Z. Wu, Chem. Engineer. 3, 48 (2006)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hongmei Zhao, Xiuyan Pang, and Zhixiao Zhai
Journal of Polymers, 2015, Volume 2015, Page 1
[2]
Chuanmei Jiao, Chongjie Zhang, Juan Dong, Xilei Chen, Yi Qian, and Shaoxiang Li
Journal of Thermal Analysis and Calorimetry, 2015, Volume 119, Number 3, Page 1759

Comments (0)

Please log in or register to comment.