Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 12, Issue 1


Volume 13 (2015)

Current uses and trends in catalytic isomerization, alkylation and etherification processes to improve gasoline quality

José Hidalgo
  • Unipetrol Center of Research and Education — UNICRE, Research Institute of Inorganic Chemistry, Areál Chempark, 436 70, Litvínov-Záluží, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michal Zbuzek
  • Unipetrol Center of Research and Education — UNICRE, Research Institute of Inorganic Chemistry, Areál Chempark, 436 70, Litvínov-Záluží, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Radek Černý
  • Unipetrol Center of Research and Education — UNICRE, Research Institute of Inorganic Chemistry, Areál Chempark, 436 70, Litvínov-Záluží, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petr Jíša
  • Unipetrol Center of Research and Education — UNICRE, Research Institute of Inorganic Chemistry, Areál Chempark, 436 70, Litvínov-Záluží, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-10-27 | DOI: https://doi.org/10.2478/s11532-013-0354-9


Due to the growing restrictions on the content of aromatic compounds by the European legislation in motor fuels and at the same time the need for higher quality fuels (minimizing the presence of contaminants and hazardous products to health), it has become necessary to increase processes that can maximize the number of octane in gasoline. This manuscript is aimed to provide current trends and processes related to isomerization, alkylation and etherification processes to improve gasolines as final product. Examples provided include the isomerization of light n-alkanes into iso-alkanes or the alkylation, in which the preferred olefin is the methylbutilene and i-butane to produce a high octane number gasoline. Currently, there are two main commercial processes for alkylation processes (hydrofluoric and sulfuric acid technologies). Other incoming suitable process is the etherification of iso-olefins to bio-ethers (the European Union have as a minimum target of biofuel content in fuels of 10% in 2020). The refiners are recently investing in the production of bio-ETBE (ethyl tertiary butyl ether) and other products as additives using bio-ethanol and olefins. Commercial and new potential catalysts for all these processes are currently being used and under investigation.

Keywords: Gasoline; Isomerization; Alkylation; Etherification; Octane number

  • [1] J. Xu, J.Y. Ying, Angew. Chem. Int. Ed. 45, 6700 (2006) http://dx.doi.org/10.1002/anie.200600377CrossrefGoogle Scholar

  • [2] D. Maxa, Ústav technologie ropy a alternativních paliv (VŠCHT, Praha, 2011) (in Czech) www.petroleum.cz Google Scholar

  • [3] S. Cavanese, Z. Finelli, M. Busto, V.M. Benitez, C.R. Vera, J.C. Yori, Quim. Nova 33(3), 508 (2010) http://dx.doi.org/10.1590/S0100-40422010000300003CrossrefGoogle Scholar

  • [4] K.S. Anisia, G.S. Mishra, A. Kumar, Journal of Molecular Catalysis A: Chemical 215, 121 (2004) http://dx.doi.org/10.1016/j.molcata.2004.01.011CrossrefGoogle Scholar

  • [5] Directive 2009/28/EC of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC[3] K Google Scholar

  • [6] J.A. Melero, G. Vicente, M. Paniagua, G. Moralesa, P. Muñoz, Bioresour. Technol. 103, 142 (2012) http://dx.doi.org/10.1016/j.biortech.2011.09.105CrossrefGoogle Scholar

  • [7] P. Cui, G. Zhao, H. Ren, J. Huang, S. Zhang, Catalysis Today 200, 30 (2013) http://dx.doi.org/10.1016/j.cattod.2012.06.008CrossrefGoogle Scholar

  • [8] J.A. Martens, M. Tielen, P.A. Jacobs, Stud. Surf. Sci. Catal. 46 (1989) Google Scholar

  • [9] H. Deldari, Suitable catalysts for hydroisomerization of long-chain normal paraffins, Applied Catalysis A: General 293 1 (2005) http://dx.doi.org/10.1016/j.apcata.2005.07.008CrossrefGoogle Scholar

  • [10] K.C. Park, S.K. Ihm, Appl. Catal. A 203, 201 (2001) Google Scholar

  • [11] M. Dekker, in: G.J. Antos, A.M. Aitani (Eds.), Catalytic Naphtha Reforming (Taylor & Francis, New York, 2004) Google Scholar

  • [12] J.M. Parera, J.N. Beltramini, C.A. Querini, E.E. Martinelli, E.J. Churin, P.E. Aloe, N.S. Figoli, Journal of Catalysis 99, 39 (1986) http://dx.doi.org/10.1016/0021-9517(86)90196-XCrossrefGoogle Scholar

  • [13] Y. Liu, K. Murata, K. Sakanishi, Fuel 90, 3056 (2011) http://dx.doi.org/10.1016/j.fuel.2011.05.004CrossrefGoogle Scholar

  • [14] E.J. Akpabio, J.B. Neeka, Petroleum Technology Development Journal: An International Journal 3, 1 (2013) Google Scholar

  • [15] A. Feller, J.A. Lercher, Advanced Catalysis, 48, 229–295 (2004) http://dx.doi.org/10.1016/S0360-0564(04)48003-1CrossrefGoogle Scholar

  • [16] M. Umarb, D. Patela, B. Saha, Chemical Engineering Science 64, 4424–4432, (2009) http://dx.doi.org/10.1016/j.ces.2009.07.015CrossrefGoogle Scholar

  • [17] K.L. Rock, M. Korpelshoek, Increasing Refinery Fuels Production, Petroleum Technology Quarterly Magazine, Catalysis (2008) Google Scholar

  • [18] EU energy trends to 2030, European Energy and Transport 2030, http://ec.europa.eu/dgs/energy_transport/figures/trends_2030_update_2007/energy_transport_trends_2030_update_2007_en.pdf (2007) Google Scholar

  • [19] TAEE from Refinery C5 Feeds, CDTAEE, Technology Profile, CDTECH, http://www.cdtech.com/techProfilesPDF/TAEE_RefC5Feeds-CDTAEE.pdf Google Scholar

  • [20] E.A. Yasakova, A.V. Sitdikova, A.F. Achmetov, Oil and Gas Business, UDC 665.656.2, 1 (2010) Google Scholar

  • [21] G.C. Anderson, R.R. Rosin, M.A. Stine, M.J. Hunter, National Petrochemical & Refiners Association (NPRA) Annual Meeting, 2004, Washington DC, USA, AM-04-46, (National Petrochemical & Refiners Association (NPRA), USA, 2004) Google Scholar

  • [22] A. Galadima, J.A. Anderson, R.P.K. Wells, Science World Journal 4(3), 15 (2009) Google Scholar

  • [23] W.X. Kuang, A. Rives, M. Fournier, R. Hubaut, Applied Catalysis a-General 250, 221 (2003) http://dx.doi.org/10.1016/S0926-860X(03)00239-4CrossrefGoogle Scholar

  • [24] D.W. Schaefer, MRS Bull. 19, 14 (1994) Google Scholar

  • [25] W. Wanga, J. Wang, C. Chena, N. Xua, C. Mou, Catalysis Today 97, 307 (2004) http://dx.doi.org/10.1016/j.cattod.2004.07.015CrossrefGoogle Scholar

  • [26] F. Kennedy, B.D. Ratliff, Olefin isomerization, P.C. Continental Oil Company, Vol. US 3,151,179 (United States Patent Office, Oklahoma, USA, 1964) Google Scholar

  • [27] M. Mitkova, K. Kurtev, Journal of the Chinese Chemical Society 52, 1185 (2005) Google Scholar

  • [28] K. M. Dooley, B. Gates, Journal of Catalysis 96, 347 (1985) http://dx.doi.org/10.1016/0021-9517(85)90304-5CrossrefGoogle Scholar

  • [29] H. Hattori, T. Yamada, S. Triwahyono, Proceedings of 13th Saudi-Japanese Catalyst Symposium, 14–15 December 2003, Dhahram, Saudi Arabia, (Session III: FCC/PETROCHEMICALS) (King Fahd University of Petroleum & Minerals-KFUPM, Saudi Arabia, 2003) 10 Google Scholar

  • [30] EU environmental specifications for markets fuels, the council of environmental Ministers 19.6.97, 2000/2010 Google Scholar

  • [31] G. Boskovic, P. Putanov, K. Foettinger, H. Vinek, Applied Catalysis A 317(2), 175 (2007) http://dx.doi.org/10.1016/j.apcata.2006.10.024CrossrefGoogle Scholar

  • [32] S. Graeme, J. Ross, Annual Meeting, 21–23 March 2004, San Antonio, TX, USA, AM-04-49 (National Petrochemical & Refiners Association, USA, 2004) Google Scholar

  • [33] M. Mukherjee, J. Nehlsen, J. Dixon and G.D. Suciu, Step-out Paraffin Alkylation Process Using Engineered Solid-acid Catalyst, Touch briefings, Report Exelus Inc (2008) Google Scholar

  • [34] L.H. Rice, D.J. Shields, US Patent 7,439,410, B1, UOP LCC Des Plaines, IL (US), Integrated Alkylation-Isomerization Process (2008 Google Scholar

  • [35] C. Martinez, A. Corma, Coordination Chemistry Reviews 255, 1558 (2011) http://dx.doi.org/10.1016/j.ccr.2011.03.014CrossrefGoogle Scholar

  • [36] E.H. van Broekhoven, AlkyClean®, A New Solid Acid Catalyst Isobutane, Alkylation Technology, Albemarle Catalysts, Lezing KIVI (2005) Google Scholar

  • [37] W. Shen, Y. Gua, H. Xu, D. Dube, S. Kaliaguine, Applied Catalysis A: General 377, 1 (2010) http://dx.doi.org/10.1016/j.apcata.2009.12.012CrossrefGoogle Scholar

  • [38] S. Freeman, Refining Overview, Petroleum Processes and Products, E. Ekholm, K. Bowers, Pub. American Institute of Chemical Engineers (AlChE), New York, USA, CD-ROM, (2000) Google Scholar

  • [39] F. Ancillotti, V. Fattore, Fuel Processing Technology 57, 163 (1998) http://dx.doi.org/10.1016/S0378-3820(98)00081-2CrossrefGoogle Scholar

  • [40] R. Kunin, E.F. Meitzner, J.A. Oline, S.A. Fisher, N. Frisch, Ind. Eng. Chem. Prod. Res. Dev. 1, 140 (1962) http://dx.doi.org/10.1021/i360002a016CrossrefGoogle Scholar

  • [41] K.F. Yee, A.R. Mohamed, S.H. Tan, Renewable and Sustainable Energy Reviews 22, 604 (2013) http://dx.doi.org/10.1016/j.rser.2013.02.016CrossrefGoogle Scholar

  • [42] W. Kiatkittipong, S. Suwanman, N. Laosiripojan, P. Praserthdam, S. Assabumrungrat, Fuel Processing Technology 91, 456 (2010) http://dx.doi.org/10.1016/j.fuproc.2009.12.004CrossrefGoogle Scholar

  • [43] L. Degirmenci, N. Oktar, G. Dogu, Fuel Processing Technology 91, 737 (2010) http://dx.doi.org/10.1016/j.fuproc.2010.02.007CrossrefGoogle Scholar

  • [44] C.A. González-Rugerio, T. Keller, J. Pilarczyk, W. SaŁacki, A. Górak, Fuel Processing Technology 102, 1 (2012) http://dx.doi.org/10.1016/j.fuproc.2012.04.012CrossrefGoogle Scholar

  • [45] J.M. Adams, D.E. Clement, S.H. Graham, Clays & Clay Minerals 30, 129 (1982) http://dx.doi.org/10.1346/CCMN.1982.0300207CrossrefGoogle Scholar

  • [46] P. Chu, G. Kühl, Ind. Eng. Chem. Res. 26, 365 (1987) http://dx.doi.org/10.1021/ie00062a032CrossrefGoogle Scholar

About the article

Published Online: 2013-10-27

Published in Print: 2014-01-01

Citation Information: Open Chemistry, Volume 12, Issue 1, Pages 1–13, ISSN (Online) 2391-5420, DOI: https://doi.org/10.2478/s11532-013-0354-9.

Export Citation

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Pengzhao Wang, Minxiu Zhang, Wenfang Zhang, Chaohe Yang, and Chunyi Li
Industrial & Engineering Chemistry Research, 2017, Volume 56, Number 30, Page 8456
Jordi Hug Badia, Carles Fité, Roger Bringué, Eliana Ramírez, and Montserrat Iborra
Journal of Industrial and Engineering Chemistry, 2016, Volume 42, Page 36
Roberto Pizzi, Robert-Jan van Putten, Hanneke Brust, Siglinda Perathoner, Gabriele Centi, and Jan van der Waal
Catalysts, 2015, Volume 5, Number 4, Page 2244
J. M. Hidalgo, D. Kaucký, O. Bortnovsky, R. Černý, and Z. Sobalík
RSC Adv., 2015, Volume 5, Number 70, Page 56625
José M. Hidalgo, Dalibor Kaucký, Oleg Bortnovsky, Zdeněk Sobalík, and Radek Černý
Research on Chemical Intermediates, 2015, Volume 41, Number 12, Page 9425

Comments (0)

Please log in or register to comment.
Log in