Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Synthesis of bio-active titanium oxide coatings stimulated by electron-beam plasma

Tatiana Vasilieva / Igor Sokolov / Andrey Sigarev / Aung Tun Win
Published Online: 2014-11-17 | DOI: https://doi.org/10.1515/chem-2015-0015


Advantages of the electron-beam plasma (EBP) for production of bioactive titanium oxide coatings were experimentally studied. The coatings were synthesized in EBP of oxygen on the surface of plane titanium substrates. A number of analytical techniques were used to characterize morphology, chemical composition, and structure of the synthesized titanium oxide. The analysis showed the titanium oxide (IV) in the rutile form to predominate in the coatings composition.

The samples with plasmachemically synthesized TiO2-coatings were more hydrophilic than untreated titanium. The effect was stable during two weeks and then the degradation of the wettability began. The EBP-stimulated TiO2 synthesis improved the hydroxyapatite formation on the surface of plane titanium substrates. The EBP-stimulated TiO2 synthesis is promising technique to produce bioactive coatings on the surface of titanium medical dental and bone implants.

The computer simulation of plasma-surface interaction was carried out to predict the plasma composition, to find the spatial distribution of the sample temperature, and to calculate the flows of the chemically active plasma particles bombarding the tube wall. The flows of atomic and singlet oxygen were found to be the most intensive and, therefore, these particles are likely to be responsible for the formation of the biocompatible TiO2-coaings.

Keywords : Titanium oxide (IV); rutile; hydroxyapatite; oxygen species; computer simulation


  • [1] Park J.B., Lakes R.S., Biomaterials an Introduction, Plenum Press, New York, 1992 Google Scholar

  • [2] Lin F.H., Hsu Y.S., Lin S.H., Chen T.M., Mater. Chem. Phys., 2004, 87, 24 CrossrefGoogle Scholar

  • [3] Massaro C., Rotolo P., De Riccardis F., Milella E., Napoli A., Wieland M., et al., J. Mater. Sci. Mater. Med., 2002, 13, 535 CrossrefGoogle Scholar

  • [4] Kim H.W., Kim H.E., Salih V., Knowles J.C., J. Biomed. Mater. Res. B Appl. Biomater., 2004, 72B, 1 Google Scholar

  • [5] Park J.B., Kim Y.S., Lee G., Yun B.G., Kim C.H., J. Tissue. Eng. Regen. Med., 2013, 10, 115 CrossrefGoogle Scholar

  • [6] Dudek A., Arch. Metall. Mater., 2011, 56, 135 Google Scholar

  • [7] Boyd A.R., Burke G.A., Duffy H., Holmberg M., O’Kane C., Meenan B.J., Kingshott P., J. Mater. Sci. Mater. Med., 2011, 22, 71 CrossrefGoogle Scholar

  • [8] Shtansky D.V., Kiryukhantsev-Korneev P.V., Bashkova I.A., Sheveiko A.N., Levashov E.A., Int. J. Refract. Met. Hard Mater., 2010, 28, 32 CrossrefGoogle Scholar

  • [9] Katayama H., Katto M., Nakayama T., Surf. Coat.Technol., 2009, 204, 135 Google Scholar

  • [10] Roy M., Balla V.K., Bandyopadhyay A., Bose S., Acta Biomater., 2011, 7, 866 CrossrefGoogle Scholar

  • [11] Rautray T.R., Narayanan R., Kwon T.Y., Kim K.H., Thin Solid Films, 2010, 518, 3160 Google Scholar

  • [12] Sobieszczyk S., Zieliński A., Adv. Mater. Sci., 2008, 8, 35 Google Scholar

  • [13] Yoshinari M., Watanabe Y., Ohtsuka Y., Derand T., J. Dent. Res., 1997, 76, 1485 CrossrefGoogle Scholar

  • [14] Bai X., More K., Rouleau C.M., Rabiei A., Acta Biomater., 2010, 6, 2264 CrossrefGoogle Scholar

  • [15] Vasiliev M.N., In: Fortov V.E. (Ed.), Encyclopedia of low-temperature plasma, Nauka, Moscow, 2001, V IX 436 Web of ScienceGoogle Scholar

  • [16] Greenler R.G., J. Chem. Phys., 1969, 50, 1963 Google Scholar

  • [17] Transferetti B.C., Davanzo C.U., Zoppi R.A., Cruz N.C., Moraes M.A.B., Phys. Rev. B., 2001, 64, 125404 CrossrefGoogle Scholar

  • [18] Zhang J.Y., Boyd I.W., O`Sullivan B.J., Hurly P.K., Kelly P.V., Senateur J.P., J. Non-Sryst. Solids, 2002, 303, 134 Google Scholar

  • [19] Bellamy L.J., The infrared spectra of complex molecules, Methuen & Co., London, 1954 Google Scholar

  • [20] Van der Houwen J.A.M., Cressey G., Cressy B.A., Valsami-Jones E., J. Cryst. Growth, 2003, 96, 249 Google Scholar

  • [21] Rapacz-Kmita A., Elosarczyk A., Paszkiewicz Z.C., Paluszkiewicz C., J. Mol. Struct., 2004, 65, 704 Google Scholar

  • [22] Berzina-Cimdina L., Borodajenko N., In: T. Theophanides (Ed.), Infrared spectroscopy – Materials science, engineering and technology, 2012, 123 Google Scholar

  • [23] Sato K., Kumagai Y., Tanaka J., J. Biomed. Mater. Res., 2000, 50, 16 CrossrefGoogle Scholar

  • [24] Kokubo T., Ito S., Huang Z.T., Hatashi T., Sakka S., Kitsugi T., Yamamuro T., J. Biomed. Mater. Res., 1990, 24, 331 CrossrefGoogle Scholar

  • [25] Vasilieva T.M., IEEE Transac. Plasma Sci., 2010, 38, 1903 CrossrefGoogle Scholar

  • [26] Vasilieva T.M., Bayandina D.V., Instr. Exp. Tech., 2010, 53, 289 Google Scholar

  • [27] Thull R., Grant D., In: Brunette D.M. (Ed.), Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Springer-Verlag, Berlin and Heidelberg, 2001, 283 Google Scholar

  • [28] Handbook of Deposition Technologies for Film and Coatings, 2nd edition, Noyes, Park Ridge, NJ, 1994 Google Scholar

  • [29] Yuan Y., Lee T.R., In: Bracco G., Holst B. (Eds.), Surface Science Techniques, Springer-Verlag, Berlin and Heidelberg, 2013, 3 Google Scholar

  • [30] Aleksandrov N.L., Vasiliev M.N., Lysenko S.L., Negodaev S.S., In: 4-th European Conference for Aerospace Sciences, 4-8 July 2011, S-Petersburg, Russia Google Scholar

  • [31] Aleksandrov N.L., Konovalov V.P., Son E.E., In: Son E.E. (Ed.), Encyclopedia of low-temperature plasma, Yanus-K, Moscow, 2010, Ser. B. V III-3, 265 Google Scholar

  • [32] Aleksandrov N.L., Vasiliev M.N., Lysenko S.L., Mahir A.Kh., Plasma Physics Reports, 2005, 31, 425 Web of ScienceGoogle Scholar

  • [33] Kutasi K., Sa P.A., Guerra V., J. Phys. D: Appl. Phys., 2012, 45, 19205 Google Scholar

About the article

Received: 2013-12-29

Accepted: 2014-03-17

Published Online: 2014-11-17

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0015.

Export Citation

© 2015 Tatiana Vasilieva et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in