Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1 (Nov 2014)

Issues

Heterogeneous radiolysis of urea. Implications in astrobiology and prebiotic chemistry

Abigail E. Abigail E. Cruz-Hernández,
  • Corresponding author
  • Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, C.P. 04510, México D.F., México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria Colin-Garcia
  • Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F. C.P. 04510 México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alejandro Heredia-Barbero
  • Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, C.P. 04510, México D.F., México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alicia Negron-Mendoza
  • Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, C.P. 04510, México D.F., México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sergio Ramos-Bernal
  • Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, C.P. 04510, México D.F., México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-26 | DOI: https://doi.org/10.1515/chem-2015-0016

Abstract

Urea is an organic molecule present in most living organisms. Historically, it was the first organic molecule synthesized in the laboratory. In prebiotic chemistry, urea readily forms in different laboratory simulations using different energy sources. Furthermore, the role of solid surfaces, particularly minerals, might have been crucial to increase the complexity of the organic matter which may have led to the subsequent emergence of life on Earth.

In this work, the radiolysis of urea in presence of a clay is studied to determine to what extent the mineral surfaces influence the decomposition of organics. The results indicate that urea is relatively stable to ionizing radiation in aqueous solutions and up to 20 kGy no decomposition is observed. Moreover, the presence of sodium montmorillonite, by a mechanism until now unknown, affects the radiolytic behavior and urea remains in the heterogeneous solution without a change in concentration even at very high doses (140 kGy). These results indicate that solids could have protected some organics, like urea, from degradation enabling them to remain in the environment on the primitive Earth.

Graphical Abstract

Keywords : Urea; gamma radiation; chemical evolution; montmorillonite

References

  • [1] Wöhler F., Annalen der Physik und Chemie, 1828, 12, 253 (in German) CrossrefGoogle Scholar

  • [2] Lehninger A.L., Bioquímica. Las bases moleculares de la estructura y función celular, Ediciones Omega, Barcelona, 1994 (in Spanish) Google Scholar

  • [3] Miller S.L., J. Am. Chem. Soc., 1955, 77, 2351 CrossrefGoogle Scholar

  • [4] Schlesinger G., Miller S.L., J. Molec. Evol., 1983, 19, 383 Google Scholar

  • [5] Berger R., Proceed. Nat. Acad. Sci. USA, 1961, 47, 1434 CrossrefGoogle Scholar

  • [6] Palm C., Calvin M., J. Am. Chem. Soc., 1962, 84, 2115 CrossrefGoogle Scholar

  • [7] Dose K., Risi S., Biochemie, Biophysik, Biologie, 1968, 23b, 581 Google Scholar

  • [8] Colín-García M., Negrón-Mendoza A., Ramos-Bernal S., Astrobiology, 2009, 9, 279 CrossrefGoogle Scholar

  • [9] Robertson M.P., Miller S.L., Nature, 1995, 375, 772 Google Scholar

  • [10] Orgel L., Origins of Life and Evolution of the Biosphere, 2002, 32, 279 Google Scholar

  • [11] Bernal J.D., The physical bases of life, Routlege and Keegan Paul, London, 1951 Google Scholar

  • [12] Draganic I.G., Draganic Z.D., The radiation chemistry of water, Academic Press, New York, 1971 Google Scholar

  • [13] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., et al., Gaussian 03, Revision B.05, Gaussian Inc, Pittsburgh, PA, 2003 Google Scholar

  • [14] Guzmán A., Negrón-Mendoza A., Ramos-Bernal S., Cell. Molec. Biology (Noisy-le-Grand, France), 2002, 48, 525 Google Scholar

  • [15] Mortland M., Clay Minerals, 1966, 6, 143 CrossrefGoogle Scholar

  • [16] Long L.H., Zhang Y.T., Wang X.F., Cao Y.X., Applied Clay Science, 2009, 46, 57 Google Scholar

  • [17] Said M.B., Plant and soil, 1972, 36, 239 CrossrefGoogle Scholar

  • [18] Navarro-Gonzalez R., Negron-Mendoza A., Chacon E., Origins of life and Evolution of the Biosphere, 1989, 19, 109 Google Scholar

  • [19] Ainsbury E.A., Bakhanova E., Barquinero J.F., Brai M., Chumak V., Correcher V., et al., Radiation protection dosimetry, 2011, 147, 573 Google Scholar

  • [20] Eissa N.A., Sheta N.H., Meligy W.M.E., Sallam H.A., Hyperfine Interact, 1994, 91, 783 CrossrefGoogle Scholar

About the article

Received: 2014-02-28

Accepted: 2014-05-25

Published Online: 2014-11-26


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0016.

Export Citation

© 2015 Abigail E. Cruz-Hernández et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in