Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1 (Nov 2014)

Issues

Conversion of tetrachloromethane in large scale gliding discharge reactor

Michał Młotek
  • Corresponding author
  • Faculty of Chemistry, Warsaw University of Technology, 00-664 Warszawa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ewelina Reda / Krzysztof Krawczyk
Published Online: 2014-11-17 | DOI: https://doi.org/10.1515/chem-2015-0022

Abstract

Gliding discharge plasma in a large scale reactor was used for decomposition of tetrachloromethane. The new power supply system based on a power inverter was used. The conversion of CCl4 was investigated in air at normal pressure. The reactor was made of a quartz-glass tube 60 mm in diameter and contained three converging electrodes 140 mm long. Effects of the initial CCl4 concentration, gas flow rate and discharge power on CCl4 conversion have been studied. The conversion of CCl4 was high in all cases reaching a maximum of 90%. The conversion of tetrachloromethane decreased with increasing initial concentration of CCl4 in the reaction mixture. Changing the gas flow rate from 1000 Nl h-1 to 1400 Nl h-1 decreased the conversion of tetrachloromethane.

Graphical Abstract

Keywords : plasma; tetrachloromethane; gliding discharge; large scale reactor

References

  • [1] Atkinson R., Atmospheric Environ., 2000, 34, 2063 CrossrefGoogle Scholar

  • [2] Subrahmanyam C., Magureanu M., Renken A., Minsker-Kiwi L., Appl. Catal. B: Environ., 2006, 65, 150 CrossrefGoogle Scholar

  • [3] Brisset J.L., Moussa D., Doubla A., Hnatiuc E., Hnatiuc B., Youbi G.K., Herry J.M., et al., Ind. Eng. Chem. Res., 2008, 47, 5761 CrossrefGoogle Scholar

  • [4] Evans D., Rosocha L.A., Anderson G.K., Coogan J.J., Kushner M.J., J. Appl. Phys., 1993, 74(9), 5378 CrossrefGoogle Scholar

  • [5] Krawczyk K., Ulejczyk B., Plasma Chem. Plasma Process, 2004, 24, 155 CrossrefGoogle Scholar

  • [6] Krawczyk K., Ulejczyk B., Plasma Chem. Plasma Process, 2003, 23, 265 CrossrefGoogle Scholar

  • [7] Krawczyk K., Ulejczyk B., Song H.K., Lamenta A., Paluch B., Schmidt-Szałowski K., Plasma Chem. Plasma Process, 2009, 29, 27 CrossrefGoogle Scholar

  • [8] Huang L., Nakajyo K., Hari T., Ozawa S., Matsuda H., Ind. Eng. Chem. Res., 2001, 40, 5481 CrossrefGoogle Scholar

  • [9] Aghsaee M., Drakon A., Eremin A., Durrstein S.H., Bohm H., Somnitz H., et al., Phys. Chem. Chem. Phys., 2013, 15, 2821 CrossrefGoogle Scholar

  • [10] Bo Z., Yan J.H., Li X.D., Chi Y., Cen K.F., Cheron B.G., Plasma Chem. Plasma Process, 2007, 27(5), 546 CrossrefGoogle Scholar

  • [11] Michael J.V., Lim K.P., Kumaran S.S., Kiefer J.H., J. Phys. Chem., 1993, 97, 1914 CrossrefGoogle Scholar

  • [12] Penetrante B.M., Hsiao M.C., Bardsley J.N., Merrit B.T., Vogtlin G.E., Wallman P.H., et al., Phys. Lett. A, 1995, 209(1/2), 69 Google Scholar

  • [13] Nichipor H., Dashouk E., Chmielewski A.G., Zimek Z., Bulka S., Radiat. Phys. Chem., 2000, 57, 519 CrossrefGoogle Scholar

  • [14] Koch M., Cohn D.R., Patrick R.M., Schuetze M.P., Bromberg L., Reilly D., et al., Environ. Sci. Technol., 1995, 29, 2946 CrossrefGoogle Scholar

  • [15] Penetrante B.M., Bardsley J.N., Hsiao M.C., Jpn. J. Appl. Phys., 1997, 36(7B), 5007 Google Scholar

  • [16] Indarto A., Choi J.-W., Lee H., Song H.-K., Plasma Dev. Oper., 2006, 14(1), 1 CrossrefGoogle Scholar

  • [17] Van Durme J., Dewulf J., Sysmans W., Leys C., Van Langenhove H., Appl. Catal. B: Environ., 2007, 74, 161 CrossrefGoogle Scholar

  • [18] Penetrante B.M., Hsiao M.C., Bardsley J.N., Merritt B.T., Vogtlin G.E., Kuthi A., et al., Plasma Sources Sci. Technol., 1997, 6, 251 CrossrefGoogle Scholar

  • [19] Eliasson B., Kogelschatz U., J. Phys. B: At. Mol. Phys., 1986, 19, 1241 CrossrefGoogle Scholar

  • [20] Krawczyk K., Jodzis S., Lamenta A., Kostka K., Ulejczyk B., Schmidt-Szałowski K., IEEE Transactions on Plasma Sci., 2011, 39 Google Scholar

  • [21] Czernichowski A., Czernichowski P.,. 19th Int. Symp. on Plasma Chem. 2009, Bochum Germany, Proc. of ISPC 19th PDF no 699 Google Scholar

  • [22] Ertec-Poland, Polish patent application P. 404973, 2013.08.02 Google Scholar

  • [23] Atkinson R., Baulch D.L., Cox R.A., Hampson Jr. R.F., Kerr J.A., Troe J., J. Phys. Chem. Ref. Data, 1992, 21(4), 1125 CrossrefGoogle Scholar

  • [24] Olkhov R.V., Li Q., Osborne M.C., Smith I.W.M., Chem. Phys., 2001, 3, 4522 Google Scholar

  • [25] Chasovnikov S.A., Chichinin A.I., Krasnoperov L.N., Chem. Phys., 1987, 116, 91 CrossrefGoogle Scholar

  • [26] Abbatt J.P.D., Toohey D.W., Fenter F.F., Stevens P.S., Brune W.H., Anderson J.G., J. Phys. Chem., 1989, 93, 1022 CrossrefGoogle Scholar

About the article

Received: 2014-01-08

Accepted: 2014-05-14

Published Online: 2014-11-17


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0022.

Export Citation

© 2015 Michał Młotek et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in