Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

Volume 13 (2015)

Catalytic activity of hexagonal MoO3 modified with silver, palladium and copper

Yuriy B. Trach
  • Corresponding author
  • Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, 79013 Lviv, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oksana I. Makota
  • Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, 79013 Lviv, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lidiya V. Bulgakova
  • Institute of Chemistry and Chemical Technologies, Lviv Polytechnic National University, 79013 Lviv, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tatsiana V. Sviridova / Dmitry V. Sviridov
Published Online: 2014-11-01 | DOI: https://doi.org/10.1515/chem-2015-0036

Abstract

Catalytic activity of solvothermally-synthesized hexagonal molybdenum trioxide (h-MoO3) in epoxidation of 1-octene by tert-butyl hydroperoxide and the effect of deposition of metal (Ag, Pd, Cu) nanoparticles on the properties of catalyst have been investigated. It has been shown that silver-modified MoO3 demonstrates the highest catalytic activity and selectivity in the reaction of 1,2-epoxyoctane formation, whereas MoO3 modified with Pd nanoparticles exhibits worse catalytic performance than bare MoO3; by contrast, copper-modified MoO3 does not catalyze the epoxidation reaction. The Ag/MoO3 catalyst was also found to be active in the reaction of 1-octene oxidation by molecular oxygen at the initial stage of the oxidation process.

Graphical Abstract

Keywords : epoxidation; molybdenum trioxide; metal nanoparticles

References

  • [1] Yudin A.K., Aziridines and Epoxides in Organic Synthesis, Wiley-VCH, Weinheim, 2006 Google Scholar

  • [2] Beller M., Bolm C. (Eds.), Transition metals for organic synthesis. Building blocks and fine chemicals, Wiley-VCH, Weinheim, 2004 Google Scholar

  • [3] Weissermel H., Industrial organic chemistry, Wiley-VCH, Weinheim, 2003 Google Scholar

  • [4] Tietze L.F., Eicher T., Diederichsen U., Speicher A., Reactions and Syntheses in the Organic Chemistry Laboratory, Wiley-VCH, Weinheim, 2007 Google Scholar

  • [5] Roberts S.M., Catalysts for Fine Chemical Synthesis, Wiley-VCH, Weinheim, 2007 Google Scholar

  • [6] Joergensen K.A., Chem. Rev., 1989, 89, 431 Google Scholar

  • [7] Cheung K.C., Wong W.L., Ma D.L., Lai T.S., Wong K.Y., Coordination Chemistry Reviews, 2007, 251, 2567 Google Scholar

  • [8] Bhattacharya P.K., Chem. Sci., 1990, 102, 247 Google Scholar

  • [9] Choudhary V.R., Jha R., Jana P., Catal. Commun., 2008, 10, 205 Google Scholar

  • [10] Trach Yu., Schulze B., Makota O., Bulgakova L., J. Mol. Catal. A: Chem., 2006, 258, 292 Google Scholar

  • [11] Palma Carreiro E. da, Monteiro C., Yong-en G., Burke A.J., Rodrigues A.I., J. Mol. Cat. A: Chem., 2006, 260, 295 Google Scholar

  • [12] Sydorchuk V., Makota O., Khalameida S., Bulgakova L., Skubiszewska-Zieba J., Leboda R., Zazhigalov V., J. Therm. Anal. Calorim., 2012, 108, 1001 Google Scholar

  • [13] Palma Carreiro E. da, Burke A.J., J. Mol. Cat. A: Chem., 2006, 249, 123 Google Scholar

  • [14] Debecker D.P., Hulea V., Mutin P.H., Appl. Catal. A: Chem., 2013, 451, 192 Google Scholar

  • [15] Jin G., Lu G., Guo Ya., Guo Y., Wang J., Liu X., Catal. Letters, 2003, 87, 249 Google Scholar

  • [16] Sviridova T.V., Stepanova L.I., Sviridov D.V., J. Solid-State Electrochem., 2012, 16, 3799 Google Scholar

  • [17] Sviridova T.V., Stepanova L.I., Sviridov D.V., In: Ortiz M., Herrera T. (Eds.), Molybdenum: Characteristics, Production and Application, Nova Science, New York, 2012, p. 147 Google Scholar

  • [18] Skorb E.V., Antonouskaja L.I., Belyasova N.A., Shchukin D.G., Möhwald H., Sviridov D.V., Appl. Catal. Еnv., 2008, 53, 222 Google Scholar

  • [19] Milas N.A., Surgenor D.M., J. Am. Chem. Soc., 1946, 68, 205 Google Scholar

  • [20] Antonovskii V.L., Buzlanova M.M., Analytical chemistry of organic peroxide compounds, Khimiya, Moscow, 1978 (in Russian) Google Scholar

  • [21] Antonovskii V.L., Organic peroxy initiators, Moscow, Khimiya, 1972 (in Russian) Google Scholar

  • [22] Tsepalov V.F., Zavodskaya Laboratoriya, 1964, 1, 111 () (in Russian) Google Scholar

  • [23] Forouzan F., Richards T.C., Bard A.J., J. Phys.Chem., 1996, 100, 18123 Google Scholar

  • [24] Byk T.V., Sokolov V.G., Gaevskaya T.V., Skorb E.V., Sviridov D.V., Noh C.-H., et al., J. Photochem. Photobiol., 2008, 193, 56 Google Scholar

  • [25] Chongterdtoonskul A., Schwank J.W., Chavadej S., J. Mol. Catal. A: Chem., 2013, 372, 175 Google Scholar

  • [26] Jin G., Lu G., Guo Ya., Guo Y., Wang J., Liu X., Catal. Today, 2004, 93-95, 173 Google Scholar

  • [27] Monnier J.R., Hartley G.W., J. Catal., 2001, 203, 253 Google Scholar

About the article

Received: 2013-11-23

Accepted: 2014-06-26

Published Online: 2014-11-01


Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0036.

Export Citation

© 2015 Yuriy B. Trach et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in