Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Hydrogen production from ethanol in nitrogen microwave plasma at atmospheric pressure

Bartosz Hrycak
  • Corresponding author
  • The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dariusz Czylkowski
  • The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert Miotk
  • Conjoint Doctoral School at the Faculty of Mechanical Engineering, Gdansk University of Technology, 80-233 Gdańsk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miroslaw Dors
  • The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mariusz Jasinski
  • The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 80-231 Gdańsk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jerzy Mizeraczyk
Published Online: 2014-11-17 | DOI: https://doi.org/10.1515/chem-2015-0039


Hydrogen seems to be one of the most promising alternative energy sources. It is a renewable fuel as it could be produced from e.g. waste or bio-ethanol. Furthermore hydrogen is compatible with fuel cells and is environmentally clean. In contrast to conventional methods of hydrogen production such as water electrolysis or coal gasification we propose a method based on atmospheric pressure microwave plasma. In this paper we present results of the experimental investigations of hydrogen production from ethanol in the atmospheric pressure plasma generated in waveguide-supplied cylindrical type nozzleless microwave (2.45 GHz) plasma source (MPS). Nitrogen was used as a working gas. All experimental tests were performed with the nitrogen flow rate Q ranged from 1500 to 3900 NL h-1 and absorbed microwave power PA up to 5 kW. Ethanol was introduced into the plasma using the induction heating vaporizer. The process resulted in an ethanol conversion rate greater than 99%. The hydrogen production rate was up to 728 NL[H2] h-1 and the energy efficiency was 178 NL[H2] per kWh of absorbed microwave energy.

Graphical Abstract

Keywords : hydrogen production; microwave plasma; atmospheric pressure; liquid hydrocarbons; ethanol reforming


  • [1] Holladay J.D., Hu J., King D.L., Wang Y., Catalysis Today, 2009, 139, 244 CrossrefGoogle Scholar

  • [2] Abbas H.F., Wan Daud W.M.A., Int. J. Hydrogen Energy, 2010, 35, 1160 Google Scholar

  • [3] Shin D.H., Hong Y.C., Lee S.J., Kim Y.J., Cho C.H., Ma S.H., et al., Surf. & Coat. Technol., 2013, 228, S520 Google Scholar

  • [4] Boudesocque N., Vandensteendam C., Lafon C., Girold C., Baronnet J.M., 16th World Hydrogen Energy Conference, 13-16 June 2006, Lyon, France (Curran Associates, Red Hook, NY, 2006) 1616 Google Scholar

  • [5] Liu X.Z., Liu Ch.J., Eliasson B., Chinese Chemical Letters, 2003, 14, 631 Google Scholar

  • [6] Pineda M., Santiago I., Calzada M.D., Feugeas J., 32nd EPS Conference on Plasma Physics, 27 June – 1 July, Tarragona, 2005, Spain, http://epsppd.epfl.ch/Tarragona/pdf/P4_135.pdf, p-4.135 Google Scholar

  • [7] Sekine Y., Urasaki K., Asai S., Matsukata M., Kikuchia E., Kadob S., Chem. Commun., 2005, 78 CrossrefGoogle Scholar

  • [8] Aubry O., Met C., Khacef A., Cormier J.M., Chem. Engineering J., 2005, 106, 241 CrossrefGoogle Scholar

  • [9] Wang Y.-F., You Y.-S., Tsai C.-H., Wang L.-C., Int. J. Hydrogen Energy, 2010, 35, 9637 Google Scholar

  • [10] Rincon R., Jimenez M., Munoz J., Saez M., Calzada M.D., Plasma Chem. Plasma Process, 2014, 34, 145 Google Scholar

  • [11] Tang L., Huang H., Fuel, 2005, 84, 2055 CrossrefGoogle Scholar

  • [12] Hrabovsky M., Konrad M., Kopecky V., Hlina M., Kavka T., van Oost G., et al., Czechoslovak J. Phys., 2006, 56, B1199 Google Scholar

  • [13] Kim Y., Abbate S., Ziock H., Anderson G.K., Rosocha L.A., IEEE Transaction on Plasma Science, 2007, 35, 1677 Google Scholar

  • [14] Yoon S.J., Lee J.G., Energy Fuels, 2012, 26, 524 CrossrefGoogle Scholar

  • [15] Moustakas K., Fatta D., Malamis S., Haralambous K., Loizidou M., J. Hazardous Materials B, 2005, 123, 120 Google Scholar

  • [16] Gomez E., Amutha Rani D., Cheeseman C.R., Deegan D., Wise M., Boccaccini A.R., J. Hazardous Materials, 2009, 161, 614 Google Scholar

  • [17] Du Ch., Li H., Zhang L., Wang J., Huang D., Xiao M., et al., Int. J. Hydrogen Energy, 2012, 37, 8318 Google Scholar

  • [18] Hydrogen Energy and Fuel Cells - A vision of our future, European Commission, Luxembourg: Office for Official Publications of the European Communities, 2003, EUR 20719 EN, ISBN 92-894-5589-6 Google Scholar

  • [19] Randolph K., U.S. DOE. Hydrogen Production. Annual Merit Review and Peer Evaluation Meeting. May 16, 2013 http://www.hydrogen.energy.gov/pdfs/review13/pd000_randolph_2013_o.pdf Google Scholar

  • [20] Burlica R., Shih K.-Y., Hnatiuc B., Locke B.R., Ind. Eng. Chem. Res., 2011, 50, 9466 CrossrefGoogle Scholar

  • [21] Sarmiento B., Brey J.J., Viera I.G., Gonzalez-Elipe A.R., Cotrino J., Rico V.J., J. Power Sources, 2007, 169, 140 CrossrefGoogle Scholar

  • [22] Dors M., Izdebski T., Berendt A., Mizeraczyk J., Int. J. Plasma Envir. Sci. Technol., 2012, 6, 93 Google Scholar

  • [23] Mishra L.N., Shibata K., Ito H., Yugami N., Nishida Y., J. Natural Gas Chem., 2004, 13, 82 Google Scholar

  • [24] Wang Y.-F., Tsai C.-H., Chang W.-Y., Kuo Y.-M., Int. J. Hydrogen Energy, 2010, 35, 135 Google Scholar

  • [25] Tatarova E., Bundaleska N., Dias F.M., Tsyganov D., Saavedra R., Ferreira C.M., Plasma Sources Sci. Technol., 2013, 22, 065001 CrossrefGoogle Scholar

  • [26] Petitpas G., Rollier J.-D., Darmon A., Gonzalez-Aguilar J., Metkemeijer R., Fulcheri L., Int. J. Hydrogen Energy, 2007, 32, 2848 Google Scholar

  • [27] Sun S.,. Yan W, Sun P., J. Chen, Energy, 2012, 44, 911 CrossrefGoogle Scholar

  • [28] Jasinski M.,. Dors M, Mizeraczyk J., Plasma Chemistry and Plasma Processing, 2009, 29, 363 Google Scholar

  • [29] Jasinski M., Dors M., Mizeraczyk J., Eur. Phys. J. D, 2009, 54, 179 CrossrefGoogle Scholar

  • [30] Hrycak B., Czylkowski D., Jasinski M., Mizeraczyk J., Przegląd Elektrotechniczny, 2012, 88, 98 Google Scholar

  • [31] Laux, C.O., Radiation and Nonequilibrium Collisional-Radiative Models, In: Fletcher D., Charbonnier J.-M., Sarma G.S.R., Magin T., (Eds.), von Karman Institute Lecture Series 2002-07, Physico-Chemical Modeling of High Enthalpy and Plasma Flows, Rhode-Saint-Genese, Belgium, 2002 Google Scholar

  • [32] Luque J., Crosley D.R., LIFBASE: database and spectral simulation program (version 1.5). SRI international report 1999, MP: 99-009 Google Scholar

  • [33] Machala Z., Janda M., Hensel K., Jedlovsky I., Lestinska L., Foltin V., Martisovits V., Morvova M., J. Mol. Spectros., 2007, 243, 194 CrossrefGoogle Scholar

  • [34] Raud J., Laan M., Jogi I., J. Phys. D: Appl. Phys., 2011, 44, 345201 CrossrefGoogle Scholar

  • [35] Okada A., Kijima K., J. Phys. D Appl. Phys., 2002, 35, 2126 CrossrefGoogle Scholar

  • [36] Laux C.O., Spence T.G., Kruger C.H., Zare R.N., Plasma Sources Sci. Technol., 2003, 12, 125 CrossrefGoogle Scholar

  • [37] Hrycak B., Jasiński M., Mizeraczyk J., Naumov V., Chernyak V., Proc. Int. Conf. on Research and Applications of Plasmas, 12-16 Sep. 2011, Warsaw, Poland, 2011 Google Scholar

  • [38] Marinov N.M., Int. J. Chem. Kinetics, 1999, 31, 183 Google Scholar

  • [39] Hrycak B., Czylkowski D., Miotk R., Dors M., Jasinski M., Mizeraczyk J., Int. J. Hydrogen Energy (in press) http://dx.doi.org/10.1016/j.ijhydene.2014.02.160 CrossrefGoogle Scholar

  • [40] Tsyganov D., Bundaleska N., Tatarova E., Ferreira C., Int. J. Hydrogen Energy, 2013, 38, 14512 Google Scholar

  • [41] Dors M., Nowakowska H., Jasiński M., J. Mizeraczyk, Plasma Chem. Plasma Process, 2013, 34, 313 Google Scholar

  • [42] Bundaleska N., Tsyganov D., Tatarova E., Dias F.M., Int. J. Hydrogen Energy, 2014, 39, 5663 Google Scholar

  • [43] Henriques J., Bundaleska N., Tatarova E., Dias F.M., Ferreira C.M., Int. J. Hydrogen Energy, 2011, 36, 345 Google Scholar

  • [44] Bundaleska N., Tsyganov D., Saavedra R., Tatarova E., Dias F.M., Int. J. Hydrogen Energy, 2013, 38, 9145 Google Scholar

About the article

Received: 2014-01-31

Accepted: 2014-05-14

Published Online: 2014-11-17

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0039.

Export Citation

© 2015 Bartosz Hrycak et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Dariusz Czylkowski, Bartosz Hrycak, Robert Miotk, Mariusz Jasiński, Jerzy Mizeraczyk, and Mirosław Dors
Nukleonika, 2016, Volume 61, Number 2
Robert Miotk, Bartosz Hrycak, Dariusz Czylkowski, Miroslaw Dors, Mariusz Jasinski, and Jerzy Mizeraczyk
Plasma Sources Science and Technology, 2016, Volume 25, Number 3, Page 035022
Robert Miotk, Mariusz Jasiński, and Jerzy Mizeraczyk
Physics of Plasmas, 2016, Volume 23, Number 4, Page 043507

Comments (0)

Please log in or register to comment.
Log in