Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1 (Nov 2014)

Issues

Degradation of AB25 dye in liquid medium by atmospheric pressure non-thermal plasma and plasma combination with photocatalyst TiO2

Houria Ghodbane
  • Corresponding author
  • Laboratory of Environmental Engineering, Department of Process Engineering, Badji Mokhtar-Annaba, University, 23000 Annaba, Algeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oualid Hamdaoui
  • Laboratory of Environmental Engineering, Department of Process Engineering, Badji Mokhtar-Annaba, University, 23000 Annaba, Algeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jeroen Vandamme
  • Research Group Molecular Odor Chemistry, KU Leuven, Campus Gent (KAHO Sint-Lieven), Faculty of Engineering Technology, 9000 Gent, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jim Van Durme
  • Research Group Molecular Odor Chemistry, KU Leuven, Campus Gent (KAHO Sint-Lieven), Faculty of Engineering Technology, 9000 Gent, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patrick Vanraes
  • 3Department of Applied Physics, - Faculty of engineering and Architecture, Ghent University, Technicum B4, 9000 Ghent, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christophe Leys
  • 3Department of Applied Physics, - Faculty of engineering and Architecture, Ghent University, Technicum B4, 9000 Ghent, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anton Y. Nikiforov
  • Department of Applied Physics, - Faculty of engineering and Architecture, Ghent University, Technicum B4, 9000 Ghent, Belgium; Laboratory of Non-Linear Processes, Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-17 | DOI: https://doi.org/10.1515/chem-2015-0040

Abstract

In this work, degradation of the anthraquinonic dye Acid Blue 25 by non-thermal plasma at atmospheric pressure with and without photocatalyst is investigated. Titanium dioxide (TiO2) is used as a photocatalyst. The dye degradation by plasma in the presence of TiO2 is investigated as a function of TiO2 concentration, dye concentration and pH. The degradation rate is higher in acidic solutions with pH of 2 to 4.3, especially at pH 2, and decreases to 0.38 mg L-1 min-1 with the increase of pH from 2 to 5.65. A similar effect is observed in basic media, where a higher degradation rate is found at pH = 10.3. The degradation rate increases in the presence of TiO2 compared to the discharge without photocatalysis. The results show that the degradation of the dye increases in the presence of TiO2 until the catalyst load reaches 0.5 g L-1 after which the suppression of AB25 degradation is observed. The results indicate that the tested advanced oxidation processes are very effective for the degradation of AB25 in aqueous solutions.

Graphical Abstract

Keywords : glow discharge; wastewater; non-thermal plasma; advanced oxidation processes

References

  • [1] Chung K.T., Stevens S.E., Environ. Toxicol. Chem., 1993, 12, 2121- 2132 Google Scholar

  • [2] Neppolian B., Choi H.C., Sakthivel S., Arabindoo B., Murugesan V., J. Hazard. Mater., 2002, 89, 303-317 Google Scholar

  • [3] Ma H., Zhuo Q., Wang B., Environ. Sci. Technol., 2007, 41, 7491-7496 Google Scholar

  • [4] Kayan B., Gözmen B., Demirel M., Murat Gizir A., J. Hazard. Mater., 2010, 177, 95-102 Google Scholar

  • [5] Kusvuran E., Gulnaz O., Irmak S., Atanur O.M., Yavuz H.I., Erbatur O., J. Hazard. Mater., 2004, 109, 85-93 Google Scholar

  • [6] Brillas E., Calpe J.C., Casado J., Water Res., 2000, 34, 2253-2262 Google Scholar

  • [7] Xie Y.B., Li X.Z., Mater. Chem. Phys., 2006, 95, 39-50 Google Scholar

  • [8] Mittal A., Krishnan L., Gupta V.K., J. Hazard. Mater., 2005, 117, 171-178 Google Scholar

  • [9] Gupta V.K., Ali I., Saini V.K., Water Research, 2007, 41(15), 3307- 3316 CrossrefGoogle Scholar

  • [10] Gupta V.K., Malviya A.M.A., Mittal J., J. Colloid Interface Sci., 2009, 335(1), 24-33 Google Scholar

  • [11] Gupta V.K., Jain R., Varshney S., J. Colloid Interface Sci., 2007, 312, 292-296 Google Scholar

  • [12] Gupta V.K., Ali I., Saleh T.A., Nayak A., Agarwal S., RSC Advances, 2012, 2(16), 6380-6388 CrossrefGoogle Scholar

  • [13] Sun B., Sato M., Clements J.S., J. Electrostatics, 1997, 39, 189-202 Google Scholar

  • [14] Locke B.R., Sato M., Ind. Eng. Chem. Res., 2006, 45, 882-905 Google Scholar

  • [15] Malik M.A., Plasma Chem. Plasma Process, 2010, 30(1), 21-31 CrossrefGoogle Scholar

  • [16] Wang H., Li J., Quan X., Li G., Wang F., J. Hazard. Materials, 2007, 141, 336-343 Google Scholar

  • [17] Gupta V.K., Jain R., Mittal A., Mathur M., Sikarwar S., J. Colloid Interface Sci., 2007, 309(2) , 464-469 Google Scholar

  • [18] Ghezzar M.R., Abdelmalek F., Belhadj M., Benderdouche N., Addou A., Appl. Catal. B: Env., 2007, 72(3-4), 304-313 Google Scholar

  • [19] Pichat P., Photocatalysis and Water Purification: From Fundamentals to Recent Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Germany, Weinheim, 2013 Google Scholar

  • [20] Sumpter J.P., Johnson A.C., Environ. Sci. Technol., 2005, 39(12), 4321-4332 CrossrefGoogle Scholar

  • [21] Nikiforov A.Yu., Leys Ch., Li L., Nemcova L., Krcma F., Plasma Sources Sci. Technol., 2011, 20, 034008-034018 CrossrefGoogle Scholar

  • [22] Magureanu M., Mandache N.B., Parvulescu V.I., Plasma Chem. Plasma Process, 2007, 27(5), 589-598 CrossrefGoogle Scholar

  • [23] Joshi A.A., Locke B.R., Arce P., Finney W.C., J. Hazard. Mater., 1995, 41, 3-30 CrossrefGoogle Scholar

  • [24] Bruggeman P., Schram D.C., Plasma Sources Sci. Technol., 2010, 19, 045025-045031 CrossrefGoogle Scholar

  • [25] Stara Z., Krcma F., Nejezchleb M., Skalny J.D., Desalination, 2009, 239, 283-294 Google Scholar

  • [26] Gao J., Wang X., Hu Z., Deng H., Hou J., Lu X., Kang J., Water Res., 2003, 37, 267-272 Google Scholar

  • [27] Ghodbane H., Hamdaoui O., J. Ultrasonics Sonochemistry, 2009, 16, 593-598 CrossrefGoogle Scholar

  • [28] Ghodbane H., Hamdaoui O., J. Chem. Eng., 2010, 160, 226-231 Google Scholar

  • [29] Lukes P., et al., Res. Chem. Intermed., 2005, 31, 285-294 CrossrefGoogle Scholar

  • [30] Levy G., Lutz I., Krüger A., Kloas W., Environ. Res., 2004, 94, 102-111 Google Scholar

About the article

Received: 2014-01-28

Accepted: 2014-05-29

Published Online: 2014-11-17


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0040.

Export Citation

© 2015 H. Ghodbane et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in