Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1 (Dec 2014)

Issues

Electron heating modes and frequency coupling effects in dual-frequency capacitive CF4 plasmas

Aranka Derzsi
  • Corresponding author
  • Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1121 Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edmund Schüngel / Zoltán Donkó
  • Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1121 Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julian Schulze
Published Online: 2014-12-09 | DOI: https://doi.org/10.1515/chem-2015-0044

Abstract

Two types of capacitive dual-frequency discharges, used in plasma processing applications to achieve the separate control of the ion flux, Гi, and the mean ion energy, <Ei>, at the electrodes, operated in CF4, are investigated by particle-in-cell simulations: (i) In classical dual-frequency discharges, driven by significantly different frequencies (1.937 MHz + 27.12 MHz), <Ei> and Гi are controlled by the voltage amplitudes of the low-frequency and high-frequeny components, ΦLF and ΦHF, respectively. (ii) In electrically asymmetric (EA) discharges, operated at a fundamental frequency and its second harmonic (13.56 MHz + 27.12 MHz), ΦLF and ΦHF control Гi, whereas the phase shift between the driving frequencies, θ, is varied to adjust <Ei>.

We focus on the effect of changing the control parameter for <Ei> on the electron heating and ionization dynamics and on Гi. We find that in both types of dual-frequency strongly electronegative discharges, changing the control parameter results in a complex effect on the electron heating and ionization dynamics: in classical dual-frequency discharges, besides the frequency coupling affecting the sheath expansion heating, additional frequency coupling mechanisms influence the electron heating in the plasma bulk and at the collapsing sheath edge; in EA dual-frequency discharges the electron heating in the bulk results in asymmetric ionization dynamics for values of θ around 45°, i.e., in the case of a symmetric applied

Keywords : dual-frequency RF discharges; electronegative plasmas; electrical asymmetry effect; frequency-coupling effects; electron heating modes

References

  • [1] Lieberman M.A., Lichtenberg A.J., Principles of Plasma Discharges and Materials Processing, 2nd edition, Wiley-Interscience, Hoboken, NJ, 2005 Google Scholar

  • [2] Makabe T., Petrović Z.Lj., Plasma Electronics: Applications in Microelectronic Device Fabrication, Taylor and Francis, New York, 2006 Google Scholar

  • [3] Georgieva V., Bogaerts A., Gijbels R., Numerical investigation of ion-energy-distribution functions in single and dual frequency capacitively coupled plasma reactors, Phys. Rev. E, 2004, 69, 026406 CrossrefGoogle Scholar

  • [4] Georgieva V., Bogaerts A., Numerical simulation of dual frequency etching reactors: Influence of the external process parameters on the plasma characteristics, J. Appl. Phys., 2005, 98, 023308 CrossrefGoogle Scholar

  • [5] Georgieva V., Bogaerts A., Plasma characteristics of an Ar/CF4/N2 discharge in an asymmetric dual frequency reactor: numerical investigation by a PIC/MC model, Plasma Sources Sci. Technol., 2006, 15, 368 Google Scholar

  • [6] Donkó Z., Petrović Z.Lj., Analysis of a Capacitively Coupled Dual-Frequency CF4 Discharge, Japan. J. Appl. Phys., 2006, 45, 8151 CrossrefGoogle Scholar

  • [7] Denpoh K., Nanbu K., Self-consistent Particle Simulation of Radio-Frequency CF4 Discharge with Implementation of All Ion-Neutral Reactive Collisions, J. Vac. Sci. Technol. A, 1998, 16, 1201-1206 CrossrefGoogle Scholar

  • [8] Denpoh K., Nanbu K., Self-Consistent Particle Simulation of Radio Frequency CF4 Discharge: Effect of Gas Pressure, Japan. J. Appl. Phys., 39, 2804-2808 CrossrefGoogle Scholar

  • [9] Booth J.P., Corr C.S., Curley G.A., Jolly J., Guillon J., Foldes T., Fluorine negative ion density measurement in a dual frequency capacitive plasma etch reactor by cavity ring-down spectroscopy, Appl. Phys. Lett., 2006, 88, 151502 CrossrefGoogle Scholar

  • [10] Cunge G., Chabert P., Booth J.P., Absolute fluorine atom concentrations in fluorocarbon plasmas determined from CF2 loss kinetics, J. Appl. Phys., 2001, 89, 7750 CrossrefGoogle Scholar

  • [11] Booth J.P., Optical and Electrical Diagnostics of Fluorocarbon Plasma Etching Processes, Plasma Sources Sci. Technol., 1999, 8, 249 Google Scholar

  • [12] Booth J.P, Cunge G., Chabert P., Sadeghi N., CFx radical production and loss in a CF4 reactive ion etching plasma: fluorine rich conditions, J. Appl.Phys., 1999, 85, 3097 CrossrefGoogle Scholar

  • [13] Haverlag M., Kono A., Passchier D., Kroesen G.M.W., Goedheer W.J., de Hoog F.J., Measurements of negative ion densities in 13.56‐MHz rf plasmas of CF4, C2F6, CHF3, and C3F8 using microwave resonance and the photodetachment effect, J. Appl. Phys., 1991, 70, 3472 Google Scholar

  • [14] Sobolewski M.A., Wang Y., Goyette A., Measurements and modeling of ion energy distributions in high-density radio-frequency biased CF4 discharges, J. Appl. Phys., 2002, 91, 6303-6314 CrossrefGoogle Scholar

  • [15] Proshina O.V., Rakhimova T.V., Rakhimov A.T., Voloshin D.G., Two modes of capacitively coupled rf discharge in CF4, Plasma Sources Sci. Technol., 2010, 19, 065013 Google Scholar

  • [16] Schulze J., Derzsi A., Donkó Z., Electron heating and the electrical asymmetry effect in dual-frequency capacitive CF4 discharges, Plasma Sources Sci. Technol., 2011, 20, 045008 Google Scholar

  • [17] Schulze J., Derzsi A., Dittmann K., Hemke T., Meichsner J., Donkó Z., Ionization by Drift and Ambipolar Electric Fields in Electronegative Capacitive Radio Frequency Plasmas, Phys. Rev. Lett., 2011, 107, 275001 CrossrefGoogle Scholar

  • [18] Derzsi A., Donkó Z., Schulze J., Coupling effects of driving frequencies on the electron heating in electronegative capacitive dual-frequency plasmas, J. Phys. D: Appl. Phys., 2013, 46, 482001 CrossrefGoogle Scholar

  • [19] Teichmann T., Küllig C., Dittmann K., Matyash K., Schneider R., Meichsner J., Particle-In-Cell simulation of laser photodetachment in capacitively coupled radio frequency oxygen discharges, Phys. Plasmas, 2013, 20, 113509 CrossrefGoogle Scholar

  • [20] Dittmann K., Küllig C., Meichsner J, Electron and negative ion dynamics in electronegative cc-rf plasmas, Plasma Phys. Control. Fusion, 2012, 54, 124038 CrossrefGoogle Scholar

  • [21] Belenguer P., Boeuf J.P., Transition between different regimes of rf glow discharges, Phys. Rev. A, 1990, 41, 4447 CrossrefGoogle Scholar

  • [22] Vender D., Boswell R., Electron–sheath interaction in capacitive radio‐frequency plasmas, J. Vac. Sci. Technol. A, 1992, 10, 1331 CrossrefGoogle Scholar

  • [23] Schulze J., Heil B.G., Luggenhölscher D., Mussenbrock T., Brinkmann R.P., Czarnetzki U., Electron beams in asymmetric capacitively coupled radio frequency discharges at low pressures, J. Phys. D: Appl. Phys., 2008, 41, 042003 CrossrefGoogle Scholar

  • [24] Turner M.M., Hopkins M.B., Anomalous sheath heating in a low pressure rf discharge in nitrogen, Phys. Rev. Lett., 1992, 69, 3511 CrossrefGoogle Scholar

  • [25] Czarnetzki U., Luggenhölscher D., Döbele H.F., Space and time resolved electric field measurements in helium and hydrogen RF-discharges, Plasma Sources Sci. Technol., 1999, 8, 230 Google Scholar

  • [26] Schulze J., Donkó Z., Heil B.G., Luggenhölscher D., Mussenbrock T., Brinkmann R.P., et al., Electric field reversals in the sheath region of capacitively coupled radio frequency discharges at different pressures, J. Phys. D: Appl. Phys., 2008, 41, 105214 CrossrefGoogle Scholar

  • [27] Hemke T., Eremin D., Mussenbrock T., Derzsi A., Donkó Z., Dittmann K., et al., Ionization by bulk heating of electrons in capacitive radio frequency atmospheric pressure microplasmas, Plasma Sources Sci. Technol., 2013, 22, 015012 Google Scholar

  • [28] Belenguer P., Blondeau J.P, Boufendi L., Toogood M, Plain A., Bouchoule A, et al., Phys. Rev. A, 1992, 46, 7923 CrossrefGoogle Scholar

  • [29] Schüngel E., Mohr S., Iwashita S., Schulze J., Czarnetzki U., The effect of dust on electron heating and dc self-bias in hydrogen diluted silane discharges, J. Phys. D: Appl. Phys., 2013, 46, 175205 CrossrefGoogle Scholar

  • [30] Killer E., Bandelow G., Matyash K., Schneider R., Melzer A., Observation of Ω Mode Electron Heating in dusty argon radio frequency discharges, Phys. Plasmas, 2013, 20, 083704 CrossrefGoogle Scholar

  • [31] Shibata M., Nakano N., Makabe T., O2 rf discharge structure in parallel plates reactor at 13.56 MHz for material processing, J. Appl. Phys., 1995, 77, 6181 Google Scholar

  • [32] Liu Y.X., Zhang Q.Z., Liu J., Song Y.H., Bogaerts A., Wang Y.N., Effect of bulk electric field reversal on the bounce resonance heating in dual-frequency capacitively coupled electronegative plasmas, Appl. Phys. Lett., 2012, 101, 114101 CrossrefGoogle Scholar

  • [33] Liu Y.X., Zhang Q.Z., Liu J., Song Y.H., Bogaerts A., Wang Y.N., Electron bounce resonance heating in dual-frequency capacitively coupled oxygen discharges, Plasma Sources Sci. Technol., 2013, 22, 025012 Google Scholar

  • [34] Yan M., Bogaerts A., Goedheer W.J., Gijbels R., Electron energy distribution function in capacitively coupled RF discharges: difference between electropositive Ar and electronegative SiH4 discharges, Plasma Sources Sci. Technol., 2000, 9, 583 Google Scholar

  • [35] Jiang W., Xu X., Dai Z.L., Wang Y.N., Heating mechanisms and particle flow balancing of capacitively coupled plasmas driven by combined dc/rf sources, Phys. Plasmas, 2008, 15, 033502 CrossrefGoogle Scholar

  • [36] Wang S.B., Wendt A.E., Control of ion energy distribution at substrates during plasma processing, J. Appl. Phys., 2000, 88, 643 CrossrefGoogle Scholar

  • [37] Qin X.V., Ting Y.H., Wendt A.E., Tailored ion energy distributions at an rf-biased plasma electrode, Plasma Sources Sci. Technol., 2010, 19, 065014 Google Scholar

  • [38] Rauf S., Kushner M.J., Nonlinear dynamics of radio frequency plasma processing reactors powered by multifrequency sources, IEEE Trans. Plasma Sci., 1999, 27, 1329-1338 CrossrefGoogle Scholar

  • [39] Schulze J., Schüngel E., Czarnetzki U., Coupling effects in inductive discharges with radio frequency substrate biasing, Appl. Phys. Lett., 2012, 100, 024102 CrossrefGoogle Scholar

  • [40] Lee H.C., Lee M.H., Chung C.W., Effects of rf-bias power on plasma parameters in a low gas pressure inductively coupled plasma, Appl. Phys. Lett., 2010, 96, 071501 CrossrefGoogle Scholar

  • [41] Lee H.C., Chung C.W., Collisionless electron heating by radio frequency bias in low gas pressure inductive discharge, Appl. Phys. Lett., 2012, 101, 244104 CrossrefGoogle Scholar

  • [42] Boyle P.C., Ellingboe A.R., Turner M.M., Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices, J. Phys. D: Appl. Phys., 2004, 37, 697 CrossrefGoogle Scholar

  • [43] Kitajima T., Takeo Y., Petrović Z.Lj., Makabe T., Functional separation of biasing and sustaining voltages in two-frequency capacitively coupled plasma, Appl. Phys. Lett., 2000, 77, 489 CrossrefGoogle Scholar

  • [44] Denda T., Miyoshi Y., Komukai Y., Goto T., Petrović Z.Lj., Makabe T., Functional separation in two frequency operation of an inductively coupled plasma, J. Appl. Phys., 2004, 95, 870 CrossrefGoogle Scholar

  • [45] Lee J.K., Manuilenko O.V., Babaeva N.Y., Kim H.C., Shon J.W., Ion energy distribution control in single and dual frequency capacitive plasma sources, Plasma Sources Sci. Technol., 2005, 14, 89 Google Scholar

  • [46] Gans T., Schulze J., O’Connell D., Czarnetzki U., Faulkner R., Ellingboe A.R. et al., Frequency coupling in dual frequency capacitively coupled radio-frequency plasmas, Appl. Phys. Lett., 2006, 89, 261502 CrossrefGoogle Scholar

  • [47] Turner M.M., Chabert P., Collisionless Heating in Capacitive Discharges Enhanced by Dual-Frequency Excitation, Phys. Rev. Lett., 2006, 96, 205001 CrossrefGoogle Scholar

  • [48] Schulze J., Gans T., O’Connell D., Czarnetzki U., Ellingboe A.R., Turner M.M., Space and phase resolved plasma parameters in an industrial dual-frequency capacitively coupled radio-frequency discharge, J. Phys. D: Appl. Phys., 2007, 40, 7008 CrossrefGoogle Scholar

  • [49] Donkó Z., In: J. Matuska, S. Matejcik, J.D. Skalny (Eds.), Modeling of Dual-Frequency Capacitive Discharges, Proceedings of Symposium of Application of Plasma Processes (20–25 January 2007, Podbanske, Slovakia), 2007, IL 02 21–24 Google Scholar

  • [50] Donkó Z., Schulze J., Hartmann P., Korolov I., Czarnetzki U., Schüngel E., The effect of secondary electrons on the separate control of ion energy and flux in dual-frequency capacitively coupled radio frequency discharges, Appl. Phys. Lett., 2010, 97, 081501 CrossrefGoogle Scholar

  • [51] Booth J.P., Curley G., Marić D., Chabert P., Dual-frequency capacitive radiofrequency discharges: effect of low-frequency power on electron density and ion flux, Plasma Sources Sci. Technol., 2010, 19, 015005 Google Scholar

  • [52] Schulze J., Donkó Z., Schüngel E., Czarnetzki U., Secondary electrons in dual-frequency capacitive radio frequency discharges, Plasma Sources Sci. Technol., 2011, 20, 045007 Google Scholar

  • [53] Heil B.G., Schulze J., Mussenbrock T., Brinkmann R.P., Czarnetzki U., Numerical Modeling of Electron Beams Accelerated by the Radio Frequency Boundary Sheath, IEEE Trans. Plasma Sci., 2008, 36, 1404-1405 CrossrefGoogle Scholar

  • [54] Heil B.G., Czarnetzki U., Brinkmann R.P., Mussenbrock T., On the possibility of making a geometrically symmetric RF-CCP discharge electrically asymmetric, J. Phys. D: Appl. Phys., 2008, 41, 165202 CrossrefGoogle Scholar

  • [55] Donkó Z., Schulze J., Heil B.G., Czarnetzki U., PIC simulations of the separate control of ion flux and energy in CCRF discharges via the electrical asymmetry effect, J. Phys. D: Appl. Phys., 2008, 42, 025205 Google Scholar

  • [56] Czarnetzki U., Heil B.G., Schulze J., Donkó Z., Mussenbrock T., Brinkmann R.P., The Electrical Asymmetry Effect - A novel and simple method for separate control of ion energy and flux in capacitively coupled RF discharges, J. Phys. Conf. Ser., 2009, 162, 012010 CrossrefGoogle Scholar

  • [57] Schulze J., Schüngel E., Donkó Z., Czarnetzki U., The electrical asymmetry effect in capacitively coupled radio frequency discharges – measurements of dc self bias, ion energy and ion flux, J. Phys. D: Appl. Phys., 2009, 42, 092005 CrossrefGoogle Scholar

  • [58] Donkó Z., Schulze J., Czarnetzki U., Luggenhölscher D., Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges, Appl. Phys. Lett., 2009, 94, 131501 CrossrefGoogle Scholar

  • [59] Longo S., Diomede P., Modeling of Capacitively Coupled RF Plasmas in H2, Plasma Process. Polym., 2009, 6, 370-379 CrossrefGoogle Scholar

  • [60] Schulze J., Schüngel E., Donkó Z., Czarnetzki U., Optimization of the electrical asymmetry effect in dual-frequency capacitively coupled radio frequency discharges: Experiment, simulation, and model, J. Appl. Phys., 2009, 106, 063307 CrossrefGoogle Scholar

  • [61] Schulze J., Schüngel E., Donkó Z., Czarnetzki U., Excitation dynamics in electrically asymmetric capacitively coupled radio frequency discharges: experiment, simulation, and model, Plasma Sources Sci. Technol., 2010, 19, 045028 Google Scholar

  • [62] Schulze J., Schüngel E., Donkó Z., Czarnetzki U., Charge dynamics in capacitively coupled radio frequency discharges, J. Phys. D: Appl. Phys., 2010, 43, 225201 CrossrefGoogle Scholar

  • [63] Zhang Q.Z., Jiang W.J., Hou L.J., Wang Y.N., Numerical simulations of electrical asymmetry effect on electronegative plasmas in capacitively coupled rf discharge, J. Appl. Phys., 2011, 109, 013308 CrossrefGoogle Scholar

  • [64] Schulze J., Schüngel E., Donkó Z., Czarnetzki U., The electrical asymmetry effect in multi-frequency capacitively coupled radio frequency discharges, Plasma Sources Sci. Technol., 2011, 20, 015017 Google Scholar

  • [65] Czarnetzki U., Schulze J., Schüngel E., Donkó Z., The electrical asymmetry effect in capacitively coupled radio-frequency discharges, Plasma Sources Sci. Technol., 2011, 20, 024010 Google Scholar

  • [66] Bienholz S., Stymoll T., Awakowitz P., On the electrical asymmetry effect in large area multiple frequency capacitively coupled plasmas, J. Phys. D: Appl. Phys., 2014, 47, 065201 CrossrefGoogle Scholar

  • [67] Lafleur T., Delattre P.A., Johnson E.V., Booth J.P., Separate control of the ion flux and ion energy in capacitively coupled radio-frequency discharges using voltage waveform tailoring, Appl. Phys. Lett., 2012, 101, 124104 CrossrefGoogle Scholar

  • [68] Lafleur T., Booth J.P., Control of the ion flux and ion energy in CCP discharges using non-sinusoidal voltage waveforms, J. Phys. D, 2012, 45, 395203 Google Scholar

  • [69] Lafleur T., Boswell R. W., Booth J.P., Enhanced sheath heating in capacitively coupled discharges due to non-sinusoidal voltage waveforms, Appl. Phys. Lett., 2012, 100, 194101 CrossrefGoogle Scholar

  • [70] Delattre P.A., Lafleur T., Johnson E., Booth J.P., Radio-frequency capacitively coupled plasmas excited by tailored voltage waveforms: comparison of experiment and particle-in-cell simulations, J. Phys. D, 2013, 46, 235201 Google Scholar

  • [71] Kollath R., In: S. Flugge (Ed.), Encyclopedia of Physics, vol. XXI, Springer, Berlin, 1956 Google Scholar

  • [72] Kurihara M., Petrović Z.Lj., Makabe T., Transport coefficients and scattering cross-sections for plasma modelling in CF4-Ar mixtures: a swarm analysis, J. Phys. D: Appl. Phys., 2000, 33, 2146 CrossrefGoogle Scholar

  • [73] Dujko S., Raspopovic Z.M., Petrović Z.Lj., Monte Carlo studies of electron transport in crossed electric and magnetic fields in CF4, J. Phys. D: Appl. Phys., 2005, 38, 2952 CrossrefGoogle Scholar

  • [74] Bonham R.A., Electron Impact Cross Section Data for Carbon Tetrafluoride, Japan. J. Appl. Phys., 1994, 33, 4157 CrossrefGoogle Scholar

  • [75] Nanbu K., Probability theory of electron-molecule, ion-molecule, molecule-molecule, and Coulomb collisions for particle modeling of materials processing plasmas and cases, IEEE Trans. Plasma Sci., 2000, 28, 971-990 CrossrefGoogle Scholar

  • [76] Nanbu K., Kitatani Y., An ion-neutral species collision model for particle simulation of glow discharge, J. Phys. D: Appl. Phys., 1995, 28, 324 CrossrefGoogle Scholar

  • [77] Nanbu K., Denpoh K., Monte Carlo Collision Simulation of Positive-Negative Ion Recombination for a Given Rate Constant, J. Phys. Soc. Japan, 1997, 67, 1288-1290 Google Scholar

About the article

Received: 2014-01-31

Accepted: 2014-04-03

Published Online: 2014-12-09


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0044.

Export Citation

© 2015 Aranka Derzsi et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yong-Xin Liu, Ihor Korolov, Edmund Schüngel, You-Nian Wang, Zoltán Donkó, and Julian Schulze
Physics of Plasmas, 2017, Volume 24, Number 7, Page 073512
[2]
O V Proshina, T V Rakhimova, A I Zotovich, D V Lopaev, S M Zyryanov, and A T Rakhimov
Plasma Sources Science and Technology, 2017, Volume 26, Number 7, Page 075005
[3]
Yong-Xin Liu, Ihor Korolov, Edmund Schüngel, You-Nian Wang, Zoltán Donkó, and Julian Schulze
Plasma Sources Science and Technology, 2017, Volume 26, Number 5, Page 055024
[4]
M. T. Rahman and M. Mofazzal Hossain
Physics of Plasmas, 2017, Volume 24, Number 1, Page 013516

Comments (0)

Please log in or register to comment.
Log in