Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1 (Nov 2014)

Issues

Properties of atmospheric pressure plasma oxidized layers on silicon wafers

Dana Skácelová
  • Corresponding author
  • Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petr Sládek
  • Department of Physics, Faculty of Education, Masaryk University, Poříčí 7, 603 00, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pavel Sťahel
  • Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lukáš Pawera
  • Department of Physics, Faculty of Education, Masaryk University, Poříčí 7, 603 00, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Haničinec
  • Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jürgen Meichsner
  • Institute of Physics, University of Greifswald, Felix-Hausdorff-Strasse 6, 17487, Greifswald, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mirko Černák
  • Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-26 | DOI: https://doi.org/10.1515/chem-2015-0047

Abstract

In this research a new process of plasma oxidation of crystalline silicon at room temperature is studied. The plasma oxidation was carried out using Diffuse Coplanar Surface Barrier Discharge (DCSBD) operating in ambient air and oxygen at atmospheric pressure. The influence of exposition time, plasma parameters and crystallographic orientation of silicon on oxidized layers and their dielectric properties were investigated. Thickness, structure and morphology of these layers were studied by ellipsometry, infrared absorption spectroscopy and scanning electron microscopy. During the treatment time, from 1 to 30 minutes, oxidized layers were obtained with thickness from 1 to 10 nm. Their roughness depends on the crystallographic orientation of silicon surface and exposure time. Electrical parameters of the prepared layers indicate the presence of an intermediate layer between silicon substrate and the oxidized layer.

Graphical Abstract

Keywords : Amorphous silicon oxide; atmospheric pressure plasma; oxidation; DCSBD

References

  • [1] Siffert P., Krimmel E., Silicon:evolution and future of a technology, Springer - Verlag, New York, 2004, pp. 22. Google Scholar

  • [2] Kasap S., Capper P., Springer handbook of electronics and photonic materials, Springer, New York, 2007, pp. 373, 659. Google Scholar

  • [3] Sze S.M., Kwok K.NG, Physics of Semiconductor Devices, John Wiley and Sons, New Jersey, 2007, pp. 197. Google Scholar

  • [4] Taylor S., Zhang J.F., Eccleston W., A review of the plasma oxidation of silicon and its applications, Semicond. Sci. Tech., 1993, 8, 1426. Google Scholar

  • [5] Tinoco J.C., Estrada M., Baez H., Cerdeira A., Room temperature plasma oxidation: A new process for preparation of ultrathin layers of silicon oxide, and high dielectric constant materials, Thin Solid Films, 2006, 496, 546-554. Google Scholar

  • [6] Giustino F., Pasquarello A., Electronic and dielectric properties of a suboxide interlayer at the silicon-oxide interface in MOS device, Surf. Sci., 2005, 586, 183-191. Google Scholar

  • [7] Hess D.W., Plasma-assisted oxidation, anodization, and nitridation of silicon, IBM J. Res. & Dev., 1999, 43, 127-145. Google Scholar

  • [8] Skácelová D., Danilov V., Schäfer J., Quade A., Sťahel P., Černák M., Meichsner J., Room temperature plasma oxidation in DCSBD: A new method for preparation of silicon dioxide films at atmospheric pressure, Mat. Sci. Engineer: B, 2013, 178, 651. Google Scholar

  • [9] Černák M., Černáková L., Hudec I., Kováčik D., Zahoranová A., Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials, Eur. Phys. J. Appl. Phys., 2009, 47, 1-6. Web of ScienceGoogle Scholar

  • [10] Černák M., Method and apparatus for treatment of textile materials, European Patent EP 1387901 B1, 2002. Google Scholar

  • [11] Černák M., Ráhel´ J., Apparatus and treatment method of wood surface, wood fibres and wooden. Patent WO 2008085139. 2008. Google Scholar

  • [12] Šimor M., Ráhel´J., Vojtek P., Černák. M., tmospheric-pressure diffuse coplanar surface discharge for surface treatments, Appl. Phys. Lett., 2002, 81, 2716-2718. Google Scholar

  • [13] Pamreddy A., Skácelová D., Haničinec M., Sťahel P., Stupavská M., Černák M., Havel J., Plasma cleaning and activation of silicon surface in Dielectric Coplanar Surface Barrier Discharge, Surf. Coat. Technol., 2013, 236, 326-331. Web of ScienceGoogle Scholar

  • [14] Štěpánová V., Skácelová D., Slavíček P., Černák M., Chem. listy, Diffuse coplanar surface barrier discharge for cleaning and activation of glass substrate, 2012, 106, 1495-1498. Google Scholar

  • [15] Fialová M., Skácelová D., Sťahel P., Černák M., Chem. listy, Improvement of surface properties of reinforcing polypropylene fibres by atmospheric pressure plasma treatment, 2012, 106, 1439-1442. Google Scholar

  • [16] Deal R.E., Grove A.S., General Relationship for the Thermal Oxidation of Silicon, J. Appl. Phys., 1965, 36, 3770-3778. Google Scholar

  • [17] Zhang X.G., Electrochemistry of Silicon and Its Oxide, Kluwer Academic/Plenum Publishers, New York, 2001. Google Scholar

  • [18] Green M.L., Gusev E.P., Degraeve R., Garfunkel E.L., Ultrathin (<4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits, J. Appl. Phys., 2001, 90, 2057. Google Scholar

  • [19] Lisovskii I.P., Litovchenko V.G., Lozinskii V.G., Steblovskii G.I., Development of the structure of thin SiO2 films during thermal growth on Si substrate, Thin Solid Films, 1992, 213,164-169. Google Scholar

  • [20] Diebold A.C., Venables D., Chabal Y., Muller D., Weldon M., Garfunkel E., Characterization and production metrology of thin transistor gate oxide films, Mat. Sci. Semicon. Proc. 2, 1999, 45, 103-147. Google Scholar

  • [21] Mauri F., Pasquarello A., Pfrommer B.G., Yoon Y., Louie S. G., Si-O-Si bond-angle distribution in vitreous silica from first-principles Si-29 NMR analysis, Phys. Rev. B, 2000, 62, R4786-R4789. Google Scholar

  • [22] Chang H. S., Yang H.D., Hwang H., Cho H.M., Lee H.J., Moon D.W., Measurement of the physical and electrical thickness of ultrathin gate oxides, J. Vac. Sci. Technol. B, 2002, 20, 1836. Google Scholar

  • [23] Giustino F., Pasquarello A., Theory of atomic-scale dielectric permittivity at insulator interfaces, Phys. Rev. B, 2005, 71, 144104. Google Scholar

About the article

Received: 2014-01-31

Accepted: 2014-05-08

Published Online: 2014-11-26


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0047.

Export Citation

© 2015 Dana Skácelová et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ronglei Fan, Chengshuang Tang, Yu Xin, Xiaodong Su, Xiaodong Wang, and Mingrong Shen
Applied Physics Letters, 2016, Volume 109, Number 23, Page 233901
[2]
Richard Krumpolec, Jan Čech, Jana Jurmanová, Pavol Ďurina, and Mirko Černák
Surface and Coatings Technology, 2017, Volume 309, Page 301

Comments (0)

Please log in or register to comment.
Log in