Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Temperature stability of mercury compounds in solid substrates

Matej Sedlar / Majda Pavlin
  • International Postgraduate School Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Arkadij Popovič / Milena Horvat
  • International Postgraduate School Jožef Stefan, Jamova 39, 1000 Ljubljana, Slovenia; Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-26 | DOI: https://doi.org/10.1515/chem-2015-0051


The major aim of the newly adopted Mercury Convention is to reduce global mercury (Hg) emissions to the environment. In high temperature industrial processes, including coal combustion, Hg compounds present as impurities in solid materials are decomposed and evaporated leading to the emission of Hg to the atmosphere. The behaviour of different Hg compounds and their mixtures during heating have been the subject of numerous studies, and is the topic of the present work. Controlled heating can be used to fractionate Hg compounds in solid substrates, offering the possibility of identification and quantification of Hg compounds. In the attempt to develop a method for temperature fractionation of Hg, experiments were conducted with pure Hg compounds, and the compounds mixed with different substrates (SiO2 and CaSO4 • 2H2O), for calibration purposes. Detection was performed by two methods, namely Cold Vapour Atomic Absorption Spectrometry (CV AAS) with Zeeman background correction, and Nier-type Mass Spectrometry with a Knudsen cell (MS). Further investigation is in process.

Graphical Abstract

Keywords : mercury compounds; temperature fractionation; substrate; CV AAS; mass spectrometry


  • [1] UNEP, Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport, 2013a, http://www.unep.org/PDF/PressReleases/GlobalMercuryAssessment2013.pdf Google Scholar

  • [2] UNEP, Report of the intergovernmental negotiating committee to prepare a global legally binding instrument on mercury on the work of its fifth session, 2013b, http://www.unep.org/chemicalsandwaste/Portals/9/Mercury/Documents/INC5/5_7_REPORT_ADVANCE.doc Google Scholar

  • [3] Galbreath, K.C., Zygarlicke, C.J. Mercury transformations in coal combustion flue gas, Fuel. Process. Technol., 2000, 65-66 and 289–310. CrossrefGoogle Scholar

  • [4] Biester, H., Scholz, C., Determination of Mercury Binding Forms in Contaminated Soils: Mercury Pyrolysis versus Sequential Extractions, Environ. Sci. Technol., 1997, 31, 233–239. CrossrefGoogle Scholar

  • [5] Biester, H., Gosar, M., Muller, G., Mercury speciation in tailings of the Idrija mercury mine, J. Geochem. Exp., 1999, 65, 195–204. Google Scholar

  • [6] Hojdová, M., Navrátil, T., Rohovec, J., Peníek, V., Grygar. T., Mercury distribution and speciation in soils affected by historic mercury mining, Water Air Soil Pollut., 2009, 200, 89–99. Google Scholar

  • [7] Higueras, P., Oyarzun, R., Biester, H., Lillo, J., Lorenzo, S., A first insight into mercury distribution and speciation in soils from the Almadén mining district, Spain, J. Geochem. Exp., 2003, 80, 95–104. Google Scholar

  • [8] Kim, C.S., Rytuba, J.J., Brown, G.E., Geological and anthropogenic factors influencing mercury speciation in mine wastes: an EXAFS spectroscopy study, Appl. Geochem., 2004, 19, 379–393. CrossrefGoogle Scholar

  • [9] Lide, D.R., CRC Handbook of Chemistry and Physics - 90th Edition - CD-ROM Version 2010, 2010, 725–726. Google Scholar

  • [10] Schroeder, W.H., Munthe, J., Atmospheric mercury-An overview, Atmos. Environ., 1998, 32, 809–822. CrossrefGoogle Scholar

  • [11] Tariq, S.A., Hill, J.O., Thermal analysis of Mercury(I) sulfate and Mercury(II) sulphate, J. Therm. Anal., 1981, 21, 277–281. CrossrefGoogle Scholar

  • [12] Shuvaeva, O.V., Gustaytis, M.A., Anoshin, G.N., Mercury speciation in environmental solid samples using thermal release technique with atomic absorption detection, Anal. Chim. Acta., 2008, 621(Pt 2), 148–154. Web of ScienceGoogle Scholar

  • [13] Lopez-Anton, M.A., Yuan, Y., Perry, R., Maroto-Valer, M.M., Analysis of mercury species present during coal combustion by thermal desorption, Fuel, 2010, 89, 629–634. Web of ScienceCrossrefGoogle Scholar

  • [14] Rallo, M., Lopez-Anton, M.A., Perry, R., Maroto-Valer, M.M., Mercury speciation in gypsums produced from flue gas desulfurization by temperature programmed decomposition, Fuel, 2010, 89, 2157–2059. Web of ScienceCrossrefGoogle Scholar

  • [15] Luo, G., Yao, H., Xu, M., Gupta, R., Xu, Z., Identifying modes of occurrence of mercury in coal by temperature programmed pyrolysis, Proceed. Combust. Inst., 2011, 33, 2763–2769. CrossrefGoogle Scholar

  • [16] Bollen, A., Wenke, A., Biester, H., Mercury speciation analyses in HgCl2–contaminated soils and groundwater—Implications for risk assessment and remediation strategies, Water. Res., 2008, 42, 91–100. Google Scholar

  • [17] Iwashita, A., Tanamachi, S., Nakajima, T., Takanashi, H., Ohki, A., Removal of mercury from coal by mild pyrolysis and leaching behavior of mercury, Fuel, 2004, 83, 631–638. CrossrefGoogle Scholar

  • [18] Wu, S., Uddin, M.A., Nagano, S., Ozaki, M., Sasaoka, E., Fundamental Study on Decomposition Characteristics of Mercury Compounds over Solid Powder by Temperature-Programmed Decomposition Desorption Mass Spectrometry, Energy Fuels, 2011, 25, 144–153. CrossrefWeb of ScienceGoogle Scholar

  • [19] Coufalík, P., Krásenský, P., Dosbaba, M., Komárek, J., Sequential extraction and thermal desorption of mercury from contaminated soil and tailings from Mongolia, Cent. Eur. J. Chem., 2012, 10 (5), 1565–1573. Web of ScienceGoogle Scholar

  • [20] Coufalík, P., Zvěřina, O., Komárek, J., Determination of mercury species using thermal desorption analysis in AAS, Chem. Pap., 2013, 68 (4), 427–434. Web of ScienceGoogle Scholar

  • [21] Akagi, H., Nishimura, H., Speciation of mercury in the environment, In: Suzuki, T., Imura, N., Clarkson, T.W. (Eds.), Advances in mercury toxicology. Plenum Press. 1991 Google Scholar

  • [22] Sholupov, S., Pogarev, S., Ryzhov, V., Mashyanov, N., Stroganov, A., Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples, Fuel Process. Technol., 2004, 85, 473–485. Google Scholar

  • [23] NIST Mass Spectrometry Data Center, Mercury(II) chloride - Mass spectrum (electron ionization), 2013, http://webbook.nist.gov/cgi/cbook.cgi?Formula=hgcl2&NoIon=on&Units=SI&cMS=on Google Scholar

  • [24] Wendlandt, W.W., Thermal Properties of Inorganic Compounds. Hg(I) Hg(II) Compounds, Thermochim. Acta, 1974, 10, 101–107. CrossrefGoogle Scholar

  • [25] L´vov, B., Kinetics and mechanisms of thermal decomposition of mercuric oxide, Thermochim. Acta, 1999, 333, 21–26. Google Scholar

  • [26] Gmelin, Hg Compounds with O, Gmelins Handbuch, Mercury. Springer-Verlag GmbH. 1965, 34, 17–60. Google Scholar

  • [27] Owens, T.M., Wu, C., Biswas, P., An Equilibrium Analysis for Reaction of Metal Compounds with Sorbents in High Temperature Systems, Chem. Eng. Comm., 1995, 133, 31–52. Google Scholar

  • [28] Schreiber, R.J.J., Kellett, C.D., Inherent Mercury Controls Within the Portland Cement Kiln System, Research & Development Information. Skokie, Illinois: Portland Cement Association. Serial No 2841, 2005. Google Scholar

  • [29] Zheng, Y., Jensen, A.D., Windelin, C., Jensen, F., Review of technologies for mercury removal from flue gas from cement production processes, Prog. Ener. Comb. Sci., 2012, 38, 599–629. CrossrefGoogle Scholar

  • [30] Leckey, J.H., Nulf, L.E., Thermal decomposition of mercuric sulfide. Chemistry and Chemical Engineering Department - Development Organization. Oak Ridge Y-12 Plant. Tennessee: Martin Marietta Energy Systems, Inc. U. S. Department of Energy (Online), October 28, 1994, http://www.osti.gov/scitech/servlets/purl/41313 Google Scholar

  • [31] Collins, L.W., Gibson, E.K., Wendlandt, W.W., Thermal properties of inorganic compounds; evolved studies of some Mercury(I) and (II) compounds, Thermochim. Acta, 1975, 11, 177–185. CrossrefGoogle Scholar

  • [32] Cotton, F.A., Wilkinson, G., Advanced inorganic chemistry: A comprehensive text. 3rd ed, John Wiley & Sons Inc., 1972, 17–18. Google Scholar

  • [33] Bebout, D.C., Mercury: Inorganic and coordination chemistry, In: King R.B., Encyclopaedia of inorganic chemistry. 2nd ed. Wily, 2005, 6–8. Google Scholar

  • [34] Zuckerman, J.J., Hagen, A.P., Formation of the halogen (Cu, Ag, Au) or (Zn, Cd, Hg) metal bond, In: Inorganic reactions and methods, Volume 4. New York: VCH publishers inc., 1991, 144–148. Google Scholar

  • [35] Kozin, L.F., Hansen, S.C., Mercury Handbook: Chemistry, application and environmental impact, RSC Publishing, 2013, 87–89. Google Scholar

About the article

Received: 2014-02-10

Accepted: 2014-08-28

Published Online: 2014-11-26

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0051.

Export Citation

© 2015 Matej Sedlar et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Chenghang Zheng, Linjie Xu, Shaojun Liu, Li Wang, Chengsi Liang, Haitao Zhao, Yongxin Zhang, Xuesen Du, and Xiang Gao
Energy & Fuels, 2018
Huiming Xie, Kun Yang, Shiwei Li, Shaohua Yin, Jinhui Peng, Fei Zhu, Haoyu Li, and Libo Zhang
Materials Research Express, 2018, Volume 6, Number 1, Page 015507
Chao Liu, Jinhui Peng, Aiyuan Ma, Libo Zhang, and Jing Li
Journal of Hazardous Materials, 2017, Volume 322, Page 325

Comments (0)

Please log in or register to comment.
Log in