Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Influence of electrode material on hydrogen peroxide generation by DC pinhole discharge

Edita Vyhnánková / Zdenka Kozáková / František Krčma / Aleš Hrdlička
  • Masaryk University, CEITEC - Central European Institute of Technology, 625 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-18 | DOI: https://doi.org/10.1515/chem-2015-0054


In this work, several materials were studied as electrodes in a pinhole configuration of a DC plasma discharge to estimate their effect on the efficiency of the discharge, indicated by hydrogen peroxide production. Detection was carried out using a specific titanium reagent. This was combined with ICP-OES analysis of the final solutions to determine the difference between the amount of electrode material released during the discharge operation and electrolysis experiment carried out under the same conditions. It was found that from seven studied electrode materials, graphite gives the best results, while lower cost aluminum and titanium-zinc still work well. The most unsuitable materials were copper and brass; in these cases, no hydrogen peroxide was detected in the cathode part of the reactor. Results obtained by ICP analysis indicate that even in the case of brass, the absence of hydrogen peroxide is due to the presence of copper in the material. It probably affects both directly the phase of discharge creation and propagation and the decomposition reactions.

Graphical Abstract

Keywords : hydrogen peroxide; underwater discharge; titanium reagent; electrode material; ICP-OES analysis


  • [1] Manojlovic D., Ostojic D.R., Obradovic B.M., Kuraica M.M., Krsmanovic V.D., Puric J., Desalination, 2007, 213, DOI: 10.1016/j.desal.2006.05.059 CrossrefGoogle Scholar

  • [2] Arjunan K.P., Friedman G., Fridman A., Morss Clyne A., J. R. Soc. Interface, 2011, 66, 9 Google Scholar

  • [3] Xu Z., World J. Gastroenterol., 2006, 1, 12 Google Scholar

  • [4] Malik M.A., Ahmed M., Naheed R., Ghaffar A., Plasmas Polym., 2003, 8, 4 CrossrefGoogle Scholar

  • [5] Kim S., Sergiienko R., Shibata E., Hayasaka Y., Nakamura T., Mater. Trans., 2010, 51, 8 Google Scholar

  • [6] Stara Z., Krcma F., Slavicek P., Aubrecht V., In: Schmidt J., Šimek M., Pekárek S., Prukner V., (Eds.), 28th International Conference on Phenomena in Ionized Gases, July 15 – 20 2007, Prague, Czech Republic, Ústav fyziky plazmatu AV ČR, Prague, Czech Republic, 2007, 1082-1085 Google Scholar

  • [7] Halamova I., Nikiforov A., Krcma F., Leys Ch., J. Phys.: Conf. Ser., 2014, 516 Google Scholar

  • [8] Lukes P., PhD thesis, Institute of Plasma Physics, AS CR, Prague, CZ, 2001 Google Scholar

  • [9] Stara Z., Davidova J., Olexova B., Krcma F., Soural I., In: IEEE 35th International Conference on Plasma Science, 15-19 June 2008, Karlsruhe, Germany, IEEE Service Center, Piscataway, NJ, USA, 2008, 193 Google Scholar

  • [10] Bruggeman P., Leys Ch., J. Phys. D: Appl. Phys., 2009, 42, 5, DOI: 10.1088/0022-3727/42/5/053001 CrossrefGoogle Scholar

  • [11] Stara Z., PhD thesis, Brno University of Technology, Brno, CZ, 2006 Google Scholar

  • [12] Kozakova Z., Habilitation thesis, Brno University of Technology Brno, CZ, 2011 Google Scholar

  • [13] Krcma F., et al., J. Phys.: Conf. Ser., 2010, 207, 1, DOI: 10.1088/1742-6596/207/1/012010 CrossrefGoogle Scholar

  • [14] Halliwell B., Gutteridge J.M.C., Biochem. J., 1984, 219 Google Scholar

  • [15] Hall S.B., Khudaish E.A., Hart A.L., Electrochimica Acta, 1998, 32, 5 Google Scholar

  • [16] Nikiforov A.Yu., Leys Ch., Plasma Sources Sci. Technol., 2007, 16 Google Scholar

  • [17] Lee B.-H., Kim D.-S., Choi J.-H., J. Electric. Eng. & Technol., 2010, 5, 2 Google Scholar

  • [18] De Baerdemaeker F., Šimek M., Leys Ch., Vestraete W., Plasma Chem. Plasma Process, 2007, 27 Google Scholar

About the article

Received: 2013-12-20

Accepted: 2014-05-13

Published Online: 2014-11-18

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0054.

Export Citation

© 2015 Edita Vyhnánková et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Emile S. Massima Mouele, Olanrewaju Ojo. Fatoba, Omotola Babajide, Kassim O. Badmus, and Leslie F. Petrik
Environmental Science and Pollution Research, 2018
Iulia-Elena Vlad and Sorin Dan Anghel
Journal of Electrostatics, 2017, Volume 87, Page 284
Tamilselvan Velusamy, Anna Liguori, Manuel Macias-Montero, Dilli Babu Padmanaban, Darragh Carolan, Matteo Gherardi, Vittorio Colombo, Paul Maguire, Vladimir Svrcek, and Davide Mariotti
Plasma Processes and Polymers, 2017, Volume 14, Number 7, Page 1600224
Edita J. Klimova, Frantisek Krcma, Lenka Jonisova, Nicolas Gherardi, Ester Marotta, and Cristina Paradisi
The European Physical Journal Applied Physics, 2016, Volume 75, Number 2, Page 24709

Comments (0)

Please log in or register to comment.
Log in