Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Low pressure RF plasma modification of the surface of three different nano-carbon materials

Imre Bertóti
  • Corresponding author
  • Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1519 Budapest, PO Box 286, Hungary
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miklós Mohai
  • Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1519 Budapest, PO Box 286, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Csaba Balázsi
  • Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1525 Budapest, PO Box 49, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krisztina László
  • Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ János Szépvölgyi
  • Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1519 Budapest, PO Box 286, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-09 | DOI: https://doi.org/10.1515/chem-2015-0058


Well-ordered nano-carbon materials, like multi-wall carbon nanotubes, graphene oxide, graphene due to their unique physical and chemical properties, are candidates for promising applications.

In this work thin multilayered graphene, single layer graphene oxide layers and highly oriented pyrolytic graphite (HOPG) surface were treated by RF activated N2 gas plasma at nominally room temperature. Negative bias in the 0–200 V range and treatment time of 10 min was applied. Surface chemical alterations were followed by X-ray photoelectron spectroscopy (XPS). The applied treatments resulted in a significant build-up of nitrogen in the surface of these nano-carbon materials. The amount of nitrogen varied between 4 and 10 atomic %, depending on type of carbon and on biasing conditions. Evaluating the high-resolution N1s XP spectral region, typically three different chemical bonding states of the nitrogen were delineated. Peak component at 398.3 eV is assigned to C=N–C type, at 399.7 eV to sp2 N in melamine-type ring structure and at 400.9 eV to N substituting carbon in a graphite-like environment. Identical chemical bonding of the nitrogen was detected on the surface of HOPG treated in the same way for comparison.

Graphical Abstract

Keywords : RF plasma; surface modification; nano-carbon materials; XPS


  • [1] Soldano C., Mahmood A., Dujardin E., Production, properties and potential of graphene, Carbon, 2010, 48, 2127–2150. Web of ScienceCrossrefGoogle Scholar

  • [2] Hu Y.H., Wang H., Hu B., Thinnest Two-Dimensional Nanomaterial-Graphene for Solar Energy, ChemSusChem, 2010, 3, 782–796. CrossrefWeb of ScienceGoogle Scholar

  • [3] Kuila T., Bose S., Mishra A.K., Khanra P., Kim N.H., Lee J.H., Chemical functionalization of graphene and its applications, Progress in Materials Science, 2012, 57, 1061–1105. Google Scholar

  • [4] Feng L., Wu L., Qu X., New Horizons for Diagnostics and Therapeutic Applications of Graphene and Graphene Oxide, Advanced Materials, 2013, 25, 168–186. Web of ScienceCrossrefGoogle Scholar

  • [5] Tóth A., Törőcsik A., Tombácz E., Oláh E., Heggen M., Li C., et al., Interaction of phenol and dopamine with commercial MWCNTs, J. Coll. Interface Sci., 2011, 364, 469–475. CrossrefGoogle Scholar

  • [6] Whitby R.L.D., Gun’ko V.M., Korobeinyk A., Busquets R., Cundy A.B., László K., et al., Driving Forces of Conformational Changes in Single-Layer Graphene Oxide, ACS Nano, 2012, 6, 3967–3973. CrossrefGoogle Scholar

  • [7] Kuila T., Bhadra S., Yao D.H., Kim N.H., Bose S., Lee J.H., Recent advances in graphene based polymer composites, Progress in Polymer Science, 2010, 35, 1350–1375. Google Scholar

  • [8] Bertóti I., Mohai I., Mohai M., Szépvölgyi J., Surface modification of multi-wall carbon nanotubes by nitrogen attachment, Diamond Relat. Mater., 2011, 20, 965–968, DOI: 10.1016/j.diamond.2011.05.011 CrossrefWeb of ScienceGoogle Scholar

  • [9] Kun P., Weber F., Balázsi C., Preparation and examination of multilayer graphene nanosheets by exfoliation of graphite in high efficient attritor mill, Cent. Eur. J. Chem., 2011, 9, 47–51, DOI: 10.2478/s11532-010-0137-5. Web of ScienceCrossrefGoogle Scholar

  • [10] Mohai M., XPS MultiQuant: Multimodel XPS Quantification Software, Surf. Interface Anal., 2004, 36, 828–832, DOI: 10.1002/sia.1775. CrossrefGoogle Scholar

  • [11] M. Mohai M., Bertóti I., Calculation of Overlayer Thickness on Curved Surfaces Based on XPS Intensities, Surf. Interface Anal., 2004, 36, 805–808, DOI: 10.1002/sia.1769. CrossrefGoogle Scholar

  • [12] Evans S., Pritchard R.G., Thomas J.M., Relative Differential Subshell Photoionization Cross-sections (Mg Kα) from Lithium to Uranium, J. Electron Spectrosc. Relat. Phenom., 1978, 14, 341–358. CrossrefGoogle Scholar

  • [13] Reilman R.F., Msezane A., Manson S.T., Relative Intensities in Photoelectron Spectroscopy of Atoms and Molecules, J. Electron Spectrosc. Relat. Phenom., 1976, 8, 389–394. CrossrefGoogle Scholar

  • [14] Lakshminarayanan P.V., Toghiani H., Pittman Jr. C.U., Nitric acid oxidation of vapor grown carbon nanofibers, Carbon, 2004, 42, 2433–2442. CrossrefGoogle Scholar

  • [15] Zhou J-H., Sui Z-J., Zhu J., Li P., D. Chen, Dai Y.-C., et al., Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR, Carbon, 2007, 45, 785–796. CrossrefWeb of ScienceGoogle Scholar

  • [16] Baker A., Hammer P., A Study of the Chemical Bonding and Microstructure of Ion Beam-deposited CNx Films Including an XPS C 1s Peak Simulation, Surf. Interface Anal., 1997, 25, 629–642. CrossrefGoogle Scholar

  • [17] Souto S., Pickholz M., dos Santos M.C., Alvarez F., Electronic structure of nitrogen-carbon alloys (a-CNx) determined by photoelectron spectroscopy, Phys. Rev. B, 1998, 57, 2536–2540, DOI: 10.1103/PhysRevB.57.2536. CrossrefGoogle Scholar

  • [18] Ujvári T., Kolitsch A., Tóth A., Mohai M., Bertóti I., XPS characterisation of the composition and bonding states of elements in CNx layers prepared by ion beam assisted deposition, Diamond Relat. Mater., 2002, 11, 1149–1152. Google Scholar

  • [19] Marton D., Boyd K.J., Rabalais J.W., Synthesis of carbon nitride, Int. J. Modern Physics B, 1995, 9, 3527–3558, DOI: 10.1142/S0217979295001385. CrossrefGoogle Scholar

  • [20] Bertóti I., Characterization of nitride coatings by XPS, Surf. Coat. Technol., 2002, 151–152, 194–203. Google Scholar

  • [21] Rodil S.E., Muhl S., Bonding in amorphous carbon nitride, Diamond Relat. Mater., 2004, 13, 1521–1531, DOI: 10.1016/j.diamond.2003.11.008. CrossrefGoogle Scholar

  • [22] Ronning C., Feldermann H., Merk R., Hofsass H., H.P. Reinke, J.U. Thiele, Carbon nitride deposited using energetic species: A review on XPS studies, Phys.Rev. B, 1998, 58, 2207–2215, DOI: 10.1103/PhysRevB.58.2207. CrossrefGoogle Scholar

  • [23] Lin Y-C., Lin Ch-Y., Chiu P-W., Controllable graphene N-doping with ammonia plasma, Appl. Phys. Lett., 2010, 96, 133110–133110-3, DOI: 10.1063/1.3368697. Web of ScienceCrossrefGoogle Scholar

  • [24] Koch R.J., Weser M., Zhao W., Viñes F., Gotterbarm, K., Kozlov S.M., et al., Growth and electronic structure of nitrogen-doped graphene on Ni(111), Phys. Rev. B, 2012, 86, 075401, DOI: 10.1103/PhysRevB.86.075401. CrossrefGoogle Scholar

  • [25] Zhao W., Höfert O., Gotterbarm K., Zhu J.F., Papp C., Steinrück H.-P., J. Phys. Chem. C, 2012, 116, 5062–5066, DOI: 10.1021/jp209927m. CrossrefGoogle Scholar

  • [26] Bertóti I., Tóth A., Mohai M., Ujvári T., Comparison of Composition and Bonding States of Constituents in CNx Layers Prepared by DC Plasma and Magnetron Sputtering, Surf. Interface Anal., 2000, 30, 538–543. CrossrefGoogle Scholar

  • [27] Zheng W.T., Xing K.Z., Hellgren N., Lögdlund M., Johansson Å., Gelivs U., et al., Nitrogen 1s electron binding energy assignment in carbon nitride thin films with different structures, J. Electron Spectrosc. Relat. Phenom., 1997, 87, 45–49, DOI: 10.1016/S0368-2048(97)00083-2. CrossrefGoogle Scholar

  • [28] Dementjev A.P., de Graaf A., van de Sanden M.C.M., Maslakov K.I., Naumkin A.V., Serov A.A., X-ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon-nitrogen films, Diamond Relat. Mater., 2000, 9, 1904–1907, DOI: 10.1016/S0925-9635(00)00345-9. CrossrefGoogle Scholar

About the article

Received: 2014-02-07

Accepted: 2014-04-06

Published Online: 2014-12-09

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0058.

Export Citation

© 2015 Imre Bertóti et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in