Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1 (Dec 2014)

Issues

A comparison of carbon tetrachloride decomposition using spark and barrier discharges

Bogdan Ulejczyk
  • Corresponding author
  • Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krzysztof Krawczyk
  • Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michał Młotek
  • Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krzysztof Schmidt-Szałowski
  • Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Łukasz Nogal
  • Faculty of Electrical Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bolesław Kuca
  • Faculty of Electrical Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-04 | DOI: https://doi.org/10.1515/chem-2015-0059

Abstract

The decomposition of CCl4 in air was investigated at atmospheric pressure in two discharges. Reactors used to generate electrical discharges were powered by the same electric power supply. In both reactors, nearly 90% conversion of CCl4 was obtained. All chlorine was in the form of Cl2 in the process carried out in the barrier discharge, while in the spark discharge, COCl2 was formed. The conversion of CCl4 to COCl2 ranged from 2 to 12%. NO was formed in both discharges but the NO content in the gas leaving the reactors was 1.7–2.7% for the spark discharge and 0.045–0.06% for the barrier discharge. O3 was produced only in the barrier discharge and its content ranged from 0.1 to 0.2%.

Graphical Abstract

Keywords : plasma; gas cleaning; decomposition; DBD; spark discharge

References

  • [1] Sun Y., Chmielewski A.G., Bułka S., Zimek Z., Influence of base gas mixture on decomposition of 1,4-dichlorobenzene in an dlectron beam generated plasma reactor, Plasma Chem. Plasma P., 2006, 26, 347-359 CrossrefGoogle Scholar

  • [2] Raniszewski G., Kałaciński Z., Szymański Ł., Influence of contaminants on arc properties during treatment of polluted soils in electric arc plasma, J. Adv. Oxid. Technol., 2012,15, 34-40 Google Scholar

  • [3] Kirkpatrick M.J., Finney W.C., Locke B.R., Chlorinated organic compound removal by gas phase pulsed streamer corona electrical discharge reticulated vitreous carbon electrodes, Plasmas Polym., 2003,8, 165-177 CrossrefGoogle Scholar

  • [4] Han S.B., Oda T., Improvement of the energy efficiency in the decomposition of dilute trichloroethylene by the barrier discharge, IEEE T. Ind. Appl.,2005, 41, 1343-1349 CrossrefGoogle Scholar

  • [5] Magureanu M., Mandache N.D., Parvulescu V.I., Chlorinated organic compounds decomposition in a dielectric barrier discharge, Plasma Chem. Plasma P., 2007, 27, 679-690 CrossrefWeb of ScienceGoogle Scholar

  • [6] Ulejczyk B., Krawczyk K., Młotek M., Schmidt-Szałowski K., Nogal Ł., Kuca B., Decomposition of carbon tetrachloride in the reactor of dielectric barrier discharge with different power supplies, Eur. Phys. J.- Appl. Phys., 2013, 61, 24324p1-24324p7 Web of ScienceCrossrefGoogle Scholar

  • [7] Krawczyk K., Jodzis S., Lamenta A., Kostka K., Ulejczyk B., Schmidt-Szałowski K., Carbon tetrachloride decomposition by pulsed spark discharges in oxidative and nonoxidative conditions, IEEE T. Plasma Sci., 2011, 39, 3203-3210 CrossrefWeb of ScienceGoogle Scholar

  • [8] Krawczyk K., Ulejczyk B., Decomposition of chloromethanes in gliding discharges, Plasma Chem. Plasma P.,2003, 23, 265-281. CrossrefGoogle Scholar

  • [9] Indarto A., Yang D.R., Azhari C.H., Mohtar W.H.W., Choi J.W., Lee H., et al., Advanced VOCs decomposition method by gliding arc plasma, Chem. Eng. J., 2007, 131, 337-341 Web of ScienceGoogle Scholar

  • [10] Bo Z., Yan J.H., Li X.D., Chi Y., Cen K.F., Cheron B.G., Effects of oxygen and water vapor on volatile organic compounds decomposition using gliding arc gas discharge, Plasma Chem. Plasma P., 2007, 27, 546-558 CrossrefWeb of ScienceGoogle Scholar

  • [11] Jasiński M., Szczucki P., Dors M., Mizeraczyk J., Lubański M., Zakrzewski Z., Decomposition of fluorohydrocarbons in atmospheric-pressure flowing air using coaxial-line-based microwave torch plasma, Czech. J. Phys., 2000, 50/S3, 285-288 CrossrefGoogle Scholar

  • [12] Foglein K.A., Szepvolgyi J., Dombi A., Decomposition of halogenated methanes in oxygen-free gas mixtures by the use of a silent electric discharge, Chemosphere., 2003, 50, 9-13 CrossrefGoogle Scholar

  • [13] Indarto A., Choi J.W., Lee H., Song H.K., Discharge characteristics of a gliding-arc plasma in chlorinated methanes diluted in atmospheric air, Plasma Devices Oper., 2006, 14, 15-26 CrossrefGoogle Scholar

  • [14] Kovacs T., Turanyi T., Szepvolgyi J., CCl4 decomposition in RF thermal plasma in inert and oxidative environments, Plasma Chem. Plasma P., 2010, 30, 281-286 Web of ScienceCrossrefGoogle Scholar

  • [15] Krawczyk K., Ulejczyk B., Plasma Chem. Plasma P., Conversion in Gliding Discharge, 2004, 24, 155-167 CrossrefGoogle Scholar

  • [16] Krawczyk K., Ulejczyk B., Song H.K., Lamenta A., Paluch B., Schmidt-Szałowski K., Plasma-catalytic Reactor for Decomposition of Chlorinated Hydrocarbons, Plasma Chem. Plasma P., 2009, 29, 2741 Web of ScienceGoogle Scholar

  • [17] Herron J.T, Huie R.E., Rate Constants for the Reactions of Atomic Oxygen (O 3 P) with Organic Compounds in the Gas Phase, J. Phys. Chem. Ref. Data, 1973, 2, 467-518 CrossrefGoogle Scholar

  • [18] DeMare G.R., Huybrechts G., Rate constants for the recombination of CCl3 radicals and for their reactions with Cl, Cl2 and HCl in the gas phase, T. Faraday Soc., 1968, 64, 1311-1318 CrossrefGoogle Scholar

  • [19] Emel’kin V.A., Marusin V.V., Reaction of atomic nitrogen with CCl4, SiCl4, and BCl3, Kinet. Catal.+, 1979, 20, 835-840, (in Russian) Google Scholar

  • [20] Atkinson R., Baulch D.L., Cox R.A., Hampson R.F. Jr., Kerr J.A., Rossi M.J., et al., J. Phys. Chem. Ref. Data, 1997, 26, 521-1011 CrossrefGoogle Scholar

  • [21] Lee W.J., Chen C.Y., Lin W.C., Wang Y.T., Chin C.J., Phosgene formation from the decomposition of 1,1-C2H2Cl2 contained gas in an RF plasma reaktor, J. Hazard. Mater., 1996, 48, 51-67 CrossrefGoogle Scholar

  • [22] Koch M., Cohn D.R., Patrick R.M., Schuetze M.P., Bromberg L., Reilly D., et al., Electron Beam Atmospheric Pressure Cold Plasma Decomposition of Carbon Tetrachloride and Trichloroethylene, Envir. Sci. Technol., 1995, 29, 2946-2952 CrossrefGoogle Scholar

  • [23] Penetrante B.M., Hsiao M.C., Bardsley J.N., Merrit B.T., Vogtlin G.E., Wallman P.H., et al., Electron beam and pulsed corona processing of carbon tetrachloride in atmospheric pressure gas streams, Phys. Lett. A, 1995, 209, 69-77 Google Scholar

  • [24] Kovacs T., Turanyi T., Foglein K., Szepvolgyi J., Kinetic Modeling of the Decomposition of Carbon Tetrachloride in Thermal Plasma, Plasma Chem. Plasma P., 2005, 25, 109-119 CrossrefGoogle Scholar

  • [25] Indarto A., Choi J.W., Lee H., Song H.K., Decomposition of greenhouse gases by plasma, Environ. Chem. Lett., 2008, 6, 215-222 Web of ScienceCrossrefGoogle Scholar

  • [26] Jeoung S.C., Choo K.Y., Benson S.W., Very-low-pressure-reactor chemiluminescence studies on nitrogen atom reactions with chloroform and deuteriochloroform, J. Phys. Chem.-US, 1991, 95, 7282-7290 CrossrefGoogle Scholar

  • [27] Goldfarb L., Burkholder J.B., Ravishankara A.R., Kinetics of the O + ClO Reaction, J. Phys. Chem. A, 2001, 105, 5402-5409 CrossrefGoogle Scholar

  • [28] Park C., Rates of reactions chlorine monoxide + chlorine monoxide .far. molecular chlorine + molecular oxygen and chlorine monoxide + atomic oxygen .far. atomic chlorine + molecular oxygen at elevated temperatures, J. Phys. Chem.-US, 1976, 80, 565-571 CrossrefGoogle Scholar

  • [29] Baulch D.L., Duxbury J., Grant S.J., Montague D.C., Evaluated kinetic data for high temperature reactions. Volume 4 Homogeneous gas phase reactions of halogen- and cyanide- containing species, J. Phys. Chem. Ref. Data, 1981, 10, 1-721 Google Scholar

  • [30] Kukui A., Roggenbuck J., Schindler R.N., Mechanism and rate constants for the reactions of Cl atoms with HOCl, CH3OCl and tert-C4H9OCl, Ber. Bunsenges. Phys. Chem., 1997,101, 281-286 CrossrefGoogle Scholar

  • [31] Xu Z.F., Zhu R.S., Lin M.C., Ab initio studies of ClOx reactions. 3. Kinetics and mechanism for the OH + OClO reaction, J. Phys. Chem. A, 2003, 107, 1040-1049 Google Scholar

  • [32] Lord A., Pritchard H.O., Thermodynamics of the reaction between carbon dioxide and carbon tetrachloride, J. Chem. Thermodyn., 1969, 1, 495-498 CrossrefGoogle Scholar

  • [33] Cox R.A., Derwent R.G., A.E.J. Eggleton, H.J. Reid, Kinetics of chlorine oxide radicals using modulated photolysis. Part 2 -ClO and ClOO radical kinetics in the photolysis of Cl2+O2+N2 mixtures, J. Chem. Soc. Faraday T. 1, 1979, 75, 1648-1666 Google Scholar

  • [34] Davies P.B., Thrush B.A., Reactions of oxygen atoms with hydrogen cyanide, cyanogen chloride and cyanogen bromide, T. Faraday Soc., 1968, 64, 1836-1843 CrossrefGoogle Scholar

  • [35] Becker K.H., Kurtenbach R., Schmidt F., Wiesen P., Kinetics of the NCO radical reacting with atoms and selected molecules, Combust. Flame, 2000, 120, 570-577 CrossrefGoogle Scholar

  • [36] Aleksandrov N. L., Bazelyan E. M., Ionization processes in spark discharge plasmas, Plasma Sources Sci. T., 1999, 8, 285-294 CrossrefGoogle Scholar

  • [37] Kado S., Sekine Y., Nozaki T., Okazaki K., Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion, Catal. Today, 2004, 89, 47-55 CrossrefGoogle Scholar

  • [38] Bye C.A., Scheeline A., Electron density profiles in single spark discharges, J. Quant. Spectrosc. Ra., 1995, 53, 75-93. Google Scholar

  • [39] Kogelschatz U., Elianson B., Egli W., Dielectric-barrier discharges. Principle and applications, J. Phys. IV, 1997, 7, C4-47-C4-66 Google Scholar

  • [40] Jodzis S., Temperature effects under ozone synthesis process conditions, Eur. Phys. J.- Appl. Phys., 2013, 61, 24319p1-24319p9 CrossrefGoogle Scholar

About the article

Received: 2014-01-14

Accepted: 2014-05-30

Published Online: 2014-12-04


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0059.

Export Citation

© 2015 Bogdan Ulejczyk et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in