Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Spatially resolved spectroscopy of an atmospheric pressure microwave plasma jet used for surface treatment

Lucia Potočňáková
  • Corresponding author
  • Masaryk University, Department of physical electronics Kotlářská 2, CZ-61137 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jaroslav Hnilica
  • Masaryk University, Department of physical electronics Kotlářská 2, CZ-61137 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vít Kudrle
  • Masaryk University, Department of physical electronics Kotlářská 2, CZ-61137 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-09 | DOI: https://doi.org/10.1515/chem-2015-0066


In this study, the variations of properties of a microwave plasma jet (surfatron) along the discharge axis have been investigated using optical emission spectroscopy. As the argon jet is not enclosed, the spatial distribution of individual species in effluent plasma is the result of rather complicated interplay between energy loss and gradual mixing with the air. Spatial 2D relative intensity profiles of atomic lines and molecular bands at 310 nm, 336 nm, 391 nm and 656 nm are presented in the form of colour maps revealing different positions of maximum emission intensity for 310 nm and 336 nm (in the effluent plasma) and for 391 nm and 656 nm (inside the discharge tube). The plasma jet was used for surface treatment of heat resistant samples (stainless steel, aluminium, silicon wafer) and the effectiveness of the plasma treatment was evaluated by measuring the sessile drop contact angle, with water and glycerol as testing liquids. The optimal position for plasma treatment (close to the tube nozzle) combined with longer treatment time (10 s) lead to hydrophilic properties of samples with contact angles as low as 10°.

Graphical Abstract

Keywords : surfatron; optical emission spectroscopy; plasma surface treatment; stainless steel; contact angle


  • Google Scholar

  • [1] Bardos L., Barankova H., Cold atmospheric plasma: Sources, processes, and applications, Thin Solid Films, 2010, 518, 6705-6713 Google Scholar

  • [2] Tendero C., Tristant P., Desmaison J., Leprince P., Atmospheric pressure plasmas: A review, Spectrochim. Acta Part B, 2006, 61, 2-30 Google Scholar

  • [3] Zenkiewicz M., Methods for the calculation of surface free energy of solids, J. Achievements Mater. Manuf. Eng., 2007, 24, 137 Google Scholar

  • [4] Upadhyay D.J., Nai-Yi Cui, Anderson C.A., Brown N.M.D., A comparative study of the surface activation of polyamides using an air dielectric barrier discharge, Colloids Surf. A: Physicochem. Eng. Asp., 2004, 248, 47-56 Google Scholar

  • [5] Novak I., Steviar M., Chodak I., Surface energy and adhesive properties of polyamide 12 modified by barrier and radio-frequency discharge plasma, Monatshefte für Chemie, 2006, 137, 943-952 Google Scholar

  • [6] Topala I., Dumitrascu N., Dynamics of the wetting process on dielectric barrier discharge (DBD) treated wood surfaces, J. Adh. Sci. Technol., 2007, 21, 1089-1096 Web of ScienceGoogle Scholar

  • [7] Prysiazhnyi V., Vasina P., Panyala N.R., Havel J., Cernak M., Air DCSBD plasma treatment of Al surface at atmospheric pressure, Surf. Coat. Technol., 2012, 206, 3011-3016 Web of ScienceGoogle Scholar

  • [8] Prysiazhnyi V., Cernak M., Air plasma treatment of copper sheets using Diffuse Coplanar Surface Barrier Discharge, Thin Solid Films, 2012, 520, 6561-6565 Google Scholar

  • [9] Prysiazhnyi V., Svoboda T., Dvorak M., Klima M., Aluminum surface treatment by the RF plasma pencil, Surf. Coat. Technol., 2012, 206, 4140-4145 Web of ScienceGoogle Scholar

  • [10] Uhm H.S., Hong Y.C., Shin D.H., A microwave plasma torch and its applications, Plasma Sources Sci. Technol., 2006, 15, S26-S34 Google Scholar

  • [11] Moisan M., Zakrzewski Z., Pantel R., The theory and characteristics of an efficient surface wave launcher (surfatron) producing long plasma columns, J. Phys. D: Appl. Phys., 1979, 12, 219-237 CrossrefGoogle Scholar

  • [12] Hnilica J., Kudrle V., Potocnakova L., Surface treatment by atmospheric-pressure surfatron jet, IEEE Trans. Plasma Sci., 2012, 40, 2925-2930 Web of ScienceGoogle Scholar

  • [13] Hnilica J., Potocnakova L., Stupavska M., Kudrle V., Rapid surface treatment of polyamide 12 by microwave plasma jet, Appl. Surf. Sci., 2014, 288, 251-257 Web of ScienceGoogle Scholar

  • [14] Lu X., Laroussi M., Puech V., On atmospheric-pressure non-equilibrium plasma jets and plasma bullets, Plasma Sources Sci. Technol., 2012, 21, 034005 Google Scholar

  • [15] Razzak M.A., Takamura S., Saito S., Talukder M.R., Estimation of plasma parameters for microwave-sustained Ar/He plasma jets at atmospheric pressure, Contrib. Plasma Phys., 2010, 50, 871-877 Web of ScienceGoogle Scholar

  • [16] Ferreira C.M., Theory of a plasma column sustained by a surface wave, J. Phys. D: Appl. Phys., 1981, 14, 1811-1830 CrossrefGoogle Scholar

  • [17] Moisan M., Shivarova A., Trivelpiece A.W., Experimental investigations of the propagation of surface waves along a plasma column, Plasma Phys., 1982, 24, 1331-1400 CrossrefGoogle Scholar

  • [18] Moisan M., Ferreira C.M., Hajlaoui Y., Henry D., Hubert J., Pantel R., Ricard A., Zakrzewski Z., Properties and applications of surface wave produced plasmas, Revue Phys. Appl., 1982, 17, 707-727 CrossrefGoogle Scholar

  • [19] Moisan M., Zakrzewski Z., Plasma sources based on the propagation of electromagnetic surface waves, J. Phys. D: Appl. Phys., 1991, 24, 1025-1048 CrossrefGoogle Scholar

  • [20] Yildirim Erbil H., Surface chemistry of solid and liquid interfaces, Blackwell Publishing, Oxford, 2006 Google Scholar

  • [21] Buršíková V., S?tahel P., Navratil Z., Bursik J., Janca J., Surface energy evaluation of plasma treated materials by contact angle measurement, Masaryk University, Brno, 2004 Google Scholar

  • [22] Garcia M.C., Yubero C., Calzada M.D., Martinez-Jimenez M.P., Spectroscopic characterization of two different microwave (2.45 GHz) induced argon plasmas at atmospheric pressure, Appl. Spectrosc., 2005, 59, 519-528 Google Scholar

  • [23] Griem H.R., Plasma spectroscopy, McGraw-Hill, New York, 1964 Google Scholar

  • [24] Munoz J., Dimitrijevic M.S., Yubero C., Calzada M.D., Using the van der Waals broadening of spectral atomic lines to measure the gas temperature of an argon–helium microwave plasma at atmospheric pressure, Spectrochim. Acta Part B, 2009, 64, 167-172 Google Scholar

  • [25] Calzada M.D., Moisan M., Gamero A., Sola A., Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface-wave-sustained discharge at atmospheric pressure, J. Appl. Phys., 1996, 80, 46-55 Google Scholar

  • [26] Gavare Z., Svagere A., Zinge M., Revalde G., Fyodorov V., Determination of gas temperature of high-frequency low-temperature electrodeless plasma using molecular spectra of hydrogen and hydroxyl-radical, J. Quant. Spectrosc. Radiat. Transfer, 2012, 113, 1676-1682 Google Scholar

  • [27] Engelhard C., Chan G.C.Y., Gamez G., Buscher W., Hieftje G.M., Plasma diagnostic on a low-flow plasma for inductively coupled plasma optical emission spectrometry, Spectrochim. Acta Part B, 2008, 63, 619-629 Google Scholar

  • [28] Google Scholar

  • [28] Potocnakova L., Hnilica J., Kudrle V., Increase of wettability of soft- and hardwoods using microwave plasma, Int. J. Adh. Adh., 2013, 45, 125-131 Web of ScienceGoogle Scholar

About the article

Received: 2013-12-21

Accepted: 2014-05-16

Published Online: 2014-12-09

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0066.

Export Citation

© 2015 Lucia Potočňáková et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Kamal Baba, Simon Bulou, Patrick Choquet, and Nicolas D. Boscher
ACS Applied Materials & Interfaces, 2017, Volume 9, Number 15, Page 13733

Comments (0)

Please log in or register to comment.
Log in