Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

Volume 13 (2015)

Time resolved optical emission spectroscopy in power modulated atmospheric pressure plasma jet

Jaroslav Hnilica
  • Corresponding author
  • Masaryk University, Department of Physical Electronics Kotlářská 2, CZ-61137 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucia Potočňáková
  • Masaryk University, Department of Physical Electronics Kotlářská 2, CZ-61137 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vít Kudrle
  • Masaryk University, Department of Physical Electronics Kotlářská 2, CZ-61137 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-22 | DOI: https://doi.org/10.1515/chem-2015-0070

Abstract

In this paper, the effects of the power modulation on atmospheric pressure plasma jet, operated in Ar+2%N2 mixture, are studied. Time resolved optical emission spectroscopy is used for the investigation. From line and band intensities, the excitation, vibration and rotation temperatures are calculated. Their evolution during the modulation period exhibits a strong dependence on modulation frequency. For higher modulation frequencies, there is significant discrepancy in rotational temperatures calculated from OH spectra and from N2+ spectra, which indicates that thermalisation time can reach milliseconds.

Graphical Abstract

Keywords : plasma jet; amplitude modulation; rotational temperature; emission spectroscopy

References

  • [1] Kogelschatz U., Dielectric-barrier discharges: Their history, discharge physics and industrial applications, Plasma Chem. Plasma Process., 2003 23, 1-46. CrossrefGoogle Scholar

  • [2] Wagner H.E., Brandenburg R., Kozlov K.V., Sonnenfeld A., Michel P., Behnke J.F., The barrier discharge: Basic properties and applications to surface treatment, Vacuum, 2003, 71, 417-436. CrossrefGoogle Scholar

  • [3] Shenton M.J., Stevens G.C., Surface modification of polymer surfaces: atmospheric plasma versus vacuum plasma treatments, J. Phys. D: Appl. Phys., 2001, 34, 2761. CrossrefGoogle Scholar

  • [4] Schafer J., Foest R., Quade A., Ohl A., Weltmann K.-D., Local deposition of SiOx plasma polymer films by a miniaturized atmospheric pressure plasma jet (APPJ), J. Phys. D: Appl. Phys., 2008. 41, 194010. CrossrefGoogle Scholar

  • [5] Lee J.K., Kim M.S., Byun J.H., Kim K.T., Kim G.C., Park G.Y., Biomedical Applications of Low Temperature Atmospheric Pressure Plasmas to Cancerous Cell Treatment and Tooth Bleaching, Jap. Jour. Appl. Phys., 2011, 50, 08JF01. Google Scholar

  • [6] Weltmann K.-D., Polak M., Masur K., von Woedtke T., Winter J., Reuter S., Plasmas processes plasma sources in medicine, Contrib. Plasma Phys., 2012, 52, 644-654. CrossrefGoogle Scholar

  • [7] Babayan S.E., Jeong J.Y., Tu V.J., Park J., Selwyn G.S., Hicks R.F., Deposition of silicon dioxide films with an atmospheric-pressure plasma jet, Plasma Sources Sci. Technol., 1998, 7, 286-288. Google Scholar

  • [8] Hnilica J., Schafer J., Foest R., Zajickova L., Kudrle V., PECVD of nanostructured SiO2 in a modulated microwave plasma jet at atmospheric pressure, J. Phys. D: Appl. Phys., 2013, 46, 335202. Google Scholar

  • [9] Lieberman M.A., Lichtenberg A.J., Principles of Plasma Discharges and Materials Processing, 2nd ed., Wiley Interscience, Hoboken, 2005. Google Scholar

  • [10] Behle S., Brockhaus A., Engemann J., Time-resolved investigations of pulsed microwave-excited plasmas, Plasma Sources Sci. Technol., 2000, 9, 57-67. Google Scholar

  • [11] Rousseau A., Teboul E., Sadeghi N., Time resolved gas temperature measurements by laser absorption in a pulsed microwave hydrogen discharge, Plasma Sources Sci. Technol., 2004, 13, 166-176. Google Scholar

  • [12] Britun N., Godfroid T., Konstantinidis S., Snyders R., Time-resolved gas temperature evolution in pulsed Ar–N2 microwave discharge, Appl. Phys. Lett., 2011, 98, 141502. Web of ScienceCrossrefGoogle Scholar

  • [13] van der Horst R.M., Verreycken T., van Veldhuizen E.M., Bruggeman P., Time-resolved optical emission spectroscopy of nanosecond pulsed discharges in atmospheric-pressure N2 and N2/H2O mixtures, J. Phys. D: Appl. Phys., 2012 45, 345201. CrossrefGoogle Scholar

  • [14] Potocnakova L., Hnilica J., Kudrle V., Increase of wettability of soft- and hardwoods using microwave plasma, Int. J. Adh. Adh., 2013, 45, 125-131. Web of ScienceGoogle Scholar

  • [15] Hnilica J., Potocnakova L., Stupavska M., Kudrle V., Rapid surface treatment of polyamide 12 by microwave plasma jet, Appl. Surf. Sci., 2014, 288, 251-257. Web of ScienceGoogle Scholar

  • [16] Hnilica J., Kudrle V., Time-resolved study of amplitude modulation effects in surface-wave atmospheric pressure argon plasma jet, J. Phys. D: Appl. Phys., 2014, 47, 085204. CrossrefWeb of ScienceGoogle Scholar

  • [17] Moisan M., Beaudry C., Leprince P., A new HF device for the production of long plasma columns at a high electron density, Physics Letters, 1974, 50A, 125-126. CrossrefGoogle Scholar

  • [18] Hnilica J., Kudrle V., Potocnakova L., Surface treatment by atmospheric-pressure surfatron Jet, IEEE Trans. Plasma Sci., 2012, 40, 2925-2930. CrossrefWeb of ScienceGoogle Scholar

  • [19] Griem H.R., Plasma spectroscopy, McGraw-Hill, New York, 1964. Google Scholar

  • [20] Calzada M.D., Moisan M., Gamero A., Sola A., Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface-wave-sustained discharge at atmospheric pressure, J. Appl. Phys., 1996, 80, 46-55. CrossrefGoogle Scholar

  • [21] Van der Mullen J.A.M., Excitation equilibria in plasmas; a classification, Phys. Rep. 1990, 191, 109-220. Google Scholar

  • [22] Sainz A., Margot J., Garcia M.C., Calzada M.D., Role of dissociative recombination in the excitation kinetics of an argon microwave plasma at atmospheric pressure, J. Appl. Phys., 2005, 97, 113305. CrossrefGoogle Scholar

  • [23] van Gessel A.F.H., Carbone E.A.D., Bruggeman P.J., van der Mullen J.J.A.M., Laser scattering on an atmospheric pressure plasma jet: disentangling Rayleigh, Raman and Thomson scattering, Plasma Sources Sci. Technol., 2012, 21, 015003. Google Scholar

  • [24] Calzada M.D., Garcia M., Luque J.M., Santiago I., Influence of the thermodynamic equilibrium state in the excitation of samples by a plasma at atmospheric pressure, J. Appl. Phys., 2002, 92, 2269-2275. CrossrefGoogle Scholar

  • [25] Fridman A., Kennedy L.A., Plasma Physics and Engineering, Taylor & Francis, London, 2004. Google Scholar

  • [26] Popa S.D., Vibrational distributions in a flowing nitrogen glow discharge, J. Phys. D: Appl. Phys. 1996, 29, 411-415. CrossrefGoogle Scholar

  • [27] Herzberg G., Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed., Litton Educational Publ., Inc., New York, 1950. Google Scholar

  • [28] Lofthus A., Krupenie P.H., The spectrum of molecular nitrogen, J. Phys. Chem. Ref. Data, 1997, 6, 113-307. CrossrefGoogle Scholar

  • [29] Garcia M.C., Yubero C., Calzada M.D., Martinez-Jimenez M.P., Spectroscopic characterization of two different microwave (2.45 GHz) induced argon plasmas at atmospheric pressure, Appl. Spectrosc., 2005, 59, 519-528. CrossrefGoogle Scholar

  • [30] Munoz J., Dimitrijevic M.S., Yubero C., Calzada M.D., Using the van der Waals broadening of spectral atomic lines to measure the gas temperature of an argon–helium microwave plasma at atmospheric pressure, Spectrochim. Acta Part B, 2009, 64, 167-172. CrossrefGoogle Scholar

  • [31] Meinel H., Krauss L., Über die besetzung der rotationszustände von oh und C2 in niederdruckplasmen, J. Quant. Spectr. Radiat. Transfer., 1969 9, 443-460. CrossrefGoogle Scholar

  • [32] Christova M., Castanos-Martinez E., Calzada M.D., Kabouzi Y., Luque J.M., Moisan M., Electron density and gas temperature from line broadening in an argon surface-wave-sustained discharge at atmospheric pressure, Appl. Spectrosc., 2004, 58(9), 1032-1037. CrossrefGoogle Scholar

  • [33] Munoz J., Margot J., Calzada M.D., Experimental study of a helium surface-wave discharge at atmospheric pressure, J. Appl. Phys., 2010, 107, 083304. CrossrefWeb of ScienceGoogle Scholar

  • [34] Rodero A., Quintero M.C., Sola A., Gamero A., Preliminary spectroscopic experiments with helium microwave induced plasma produced in air by use of a new structure: the axial injection torch, Spectrochim. Acta Part B, 1996, 51, 467-479. CrossrefGoogle Scholar

  • [35] Cruden B.A., Rao M.V.V.S., Sharma S.P., Meyyappan M., Neutral gas temperature estimates in an inductively coupled CF4 plasma by fitting diatomic emission spectra, J. Appl. Phys., 2002, 91, 8955-8964. CrossrefGoogle Scholar

  • [36] Lombardi G., Benedic F., Mohasseb F., Hassouni K., Gicquel A., Determination of gas temperature and C2 absolute density in Ar/H2/CH4 microwave discharges used for nanocrystalline diamond deposition from the C2 Mulliken system, Plasma Sources Sci. Technol., 2004, 13, 375-386. Google Scholar

  • [37] Mermet J., Inductively coupled plasma emission spectrometry, Part II: Applications and Fundamentals, Wiley-Insterscience, New York, 1987 Google Scholar

  • [38] Moussounda P.S., Ranson P., Mermet J.M., Spatially resolved spectroscopic diagnostics of argon MIP produced by surface wave propagation (Surfatron), Spectrochim. Acta B, 1985, 40, 641-651. Google Scholar

  • [39] Ricard A., St-Onge L., Malvos H., Gicquel A., Hubert J., Moisan M., Torche a plasma a excitation micro-onde : deux configurations complémentaires, J. Phys. III, 1995, 5, 1269-1285. Google Scholar

  • [40] Gavare Z., Svagere A., Zinge M., Revalde G., Fyodorov V., Determination of gas temperature of high-frequency low-temperature electrodeless plasma using molecular spectra of hydrogen and hydroxyl-radical, J. Quant. Spectrosc. Radiat. Transfer, 2012, 113, 1676-1682. CrossrefWeb of ScienceGoogle Scholar

  • [41] Rincon R., Munoz J., Saez M., Calzada M.D., Spectroscopic characterization of atmospheric pressure argon plasmas sustained with the Torche a Injection Axiale sur Guide d’Ondes, Spectrochim. Acta Part B, 2013, 81, 26-35. CrossrefGoogle Scholar

  • [42] Bruggeman P., Schram D.C., Gonzalez M.A., Rego R., Kong M.G., Leys C., Characterization of a direct dc-excited discharge in water by optical emission spectroscopy, Plasma Sources Sci. Technol., 2009, 18, 025017. Google Scholar

  • [43] Bruggeman P., Degroote J., Vierendeels J., Leys C., Plasma characteristics in air and vapor bubbles in water, In: J. Schmidt, M. Simek, S. Pekarek, V. Prukner (Ed.), Proceedings of 28th International Conference on Phenomena in Ionized Gases (15-20 July 2007, Prague, Czech Republic), Institute of Plasma Physics AS CR Prague, 2007, 859-862. Google Scholar

  • [44] Mezei P., Cserfalvi T., Csillag L., The spatial distribution of the temperatures and the emitted spectrum in the electrolyte cathode atmospheric glow discharge, J. Phys. D.: Appl. Phys., 2005, 38, 2804. Google Scholar

  • [45] Mezei P., Cserfalvi T., Electrolyte cathode atmospheric glow discharges for direct solution analysis, Appl. Spectrosc. Rev., 2007, 42, 573-604. Web of ScienceCrossrefGoogle Scholar

  • [46] Mezei P., Cserfalvi T., A critical review of published data on the gas temperature and the electron density in the electrolyte cathode atmospheric glow discharges, Sensors, 2012, 12, 6576-6586. Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2014-01-16

Accepted: 2014-05-29

Published Online: 2014-12-22


Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0070.

Export Citation

© 2015 Jaroslav Hnilica et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in