Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

Volume 13 (2015)

Layer-by-layer assembly of thin organic films on PTFE activated by cold atmospheric plasma

András Tóth
  • Corresponding author
  • Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Klára Szentmihályi
  • Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zsófia Keresztes
  • Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Imola Szigyártó
  • Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dusan Kováčik
  • Masaryk University, R&D Center for Low-Cost Plasma and Nanotechnology Surface Modifications, Kotlářská 2, 611 37 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mirko Černák
  • Masaryk University, R&D Center for Low-Cost Plasma and Nanotechnology Surface Modifications, Kotlářská 2, 611 37 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kinga Kutasi
  • Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Institute for Solid State Physics and Optics, Konkoly Thege M. út 29-33, H-1121 Budapest, Hungary
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-22 | DOI: https://doi.org/10.1515/chem-2015-0072

Abstract

An air diffuse coplanar surface barrier discharge is used to activate the surface of polytetrafluoroethylene (PTFE) samples, which are subsequently coated with polyvinylpyrrolidone (PVP) and tannic acid (TAN) single, bi- and multilayers, respectively, using the dip-coating method. The surfaces are characterized by X-ray Photoelectron Spectroscopy (XPS), Attenuated Total Reflection – Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Atomic Force Microscopy (AFM). The XPS measurements show that with plasma treatment the F/C atomic ratio in the PTFE surface decreases, due to the diminution of the concentration of CF2 moieties, and also oxygen incorporation through formation of new C–O, C=O and O=C–O bonds can be observed. In the case of coated samples, the new bonds indicated by XPS show the bonding between the organic layer and the surface, and thus the stability of layers, while the gradual decrease of the concentration of F atoms with the number of deposited layers proves the creation of PVP/TAN bi- and multi-layers. According to the ATR-FTIR spectra, in the case of PVP/TAN multilayer hydrogen bonding develops between the PVP and TAN, which assures the stability of the multilayer. The AFM lateral friction measurements show that the macromolecular layers homogeneously coat the plasma treated PTFE surface.

Keywords : DCSBD plasma; Polytetrafluoroethylene surface; Polyvinylpyrrolidone and tannic acid layers; ATR-FTIR; XPS, AFM

References

  • [1] Huck W.T.S., Artificial skins: hierarchical wrinkling, Nat. Mater., 2005, 4, 271 CrossrefGoogle Scholar

  • [2] Kidane A.G., Salacinski H., Tiwari A., Bruckdorfer K.R., Seifalian A.M., Anticoagulant and antiplatelet agents: their clinical and device application(s) together with usages to engineer surfaces, Biomacromolecules, 2004, 5, 798 CrossrefGoogle Scholar

  • [3] Noh J.H., Baik H.K., Noh I., Park J.-C., Lee I.-S., Surface modification of polytetrafluoroethylene using atmospheric pressure jet for medical application Surf. Coat. Technol., 2007, 201, 5097 Google Scholar

  • [4] Dupuy F.P., Savoldelli M., Robert A.M., Robert L., Legeais J.M., Renard G.J.J., Chemotactic penetration of keratocytes in ePTFE polymer in vitro, J. Biomed. Mater. Res., 2001, 56, 487 CrossrefGoogle Scholar

  • [5] Helmus M.N., Hubbell J.A., Materials selection, Cardiovasc Pathol (Suppl) 1993, 2, 53S CrossrefGoogle Scholar

  • [6] Lutolf M.P., Hubbell J.A., Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue, Nat. Biotechnol. 2005, 23 (1), 47 CrossrefGoogle Scholar

  • [7] Fischbach C., Mooney D.J., Polymers for pro- and anti-angiogenic therapy, Biomaterials, 2007, 28 (12), 2069 CrossrefWeb of ScienceGoogle Scholar

  • [8] Ding X., Yang Ch., Lim T.P., Hsu L.Y., Engler A.C., Hedrick J.L., Yang Y.-Y., Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers, Biomaterials, 2012, 33, 6593 CrossrefWeb of ScienceGoogle Scholar

  • [9] Mrad O., Saunier J., Chodur C.A., Rosilio V., Agnely F., Aubert P., Vigneron J., Etcheberry A., Yagoubi N., A comparison of plasma and electron beam-sterilization of PU catheters, Radiation Physics and Chemistry, 2010, 79, 93 Google Scholar

  • [10] N. Aumsuwan, S.-H. Ye, W.R. Wagner, M.W. Urban, Covalent attachment of multilayers on poly(tetrafluoroethylene) surfaces, Langmuir 2011, 27, 11106 CrossrefWeb of ScienceGoogle Scholar

  • [11] Wang Z.G., Wan L.S., Xu Z.K., Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: an overview, J. Membr. Sci., 2007, 304, 8 Web of ScienceGoogle Scholar

  • [12] Zhu Y.B., Gao C.Y., Liu X.Y., Shen J.C., Surface modification of polycaprolactone membrane via aminolysis and biomacromolecule immobilization for promoting cytocompatibility of human endothelial cells, Biomacromolecules, 2002, 3, 1312 CrossrefGoogle Scholar

  • [13] Noh J.H., Baik H.K., Noh I., Park J.-C., Lee I.-S., Surface modification of polytetrafluoroethylene using atmospheric pressure jet for medical application, Surf. Coat. Technol., 2007, 201, 5097 Web of ScienceGoogle Scholar

  • [14] Fang Z., Hao L., Yang H., Xie X., Qiu Y., Edmund K., Polytetrafluoroethylene surface modification by filamentary and homogeneous dielectric barrier discharges in air, Appl. Surf. Sci., 2009, 255, 7279 Web of ScienceGoogle Scholar

  • [15] Kereszturi K., Tóth A., Mohai M., Bertóti I., Szépvölgyi J., Nitrogen plasma-based ion implantation of poly(tetrafluoroethylene): Effect of the main parameters on the surface properties, Appl. Surf. Sci., 2010, 256, 6385 Web of ScienceCrossrefGoogle Scholar

  • [16] Haaf F., Sanner A., Straub F., Polymers of N-Vinylpyrrolidone: Synthesis, Characterization and Uses, Polymer J. 1985, 17, 143 CrossrefGoogle Scholar

  • [17] Folttmann H., Quadir A., Polyvinylpyrrolidone (PVP) One of the Most Widely UsedExcipients in Pharmaceuticals: An Overview, Drug Delivery Technol., 2008, 8, 22 Google Scholar

  • [18] Akiyama H., Fujii K., Yamasaki O., Ono T., Iwatsuki K., Antibacterial action of several tannins against Staphylococcus aureus, J. Antimicrob. Chemother., 2011, 48, 487 Google Scholar

  • [19] Kolodziej H., Kiderlen A. F., Antileishmanial activity and immune modulatory effects of tannins and related compounds on Leishmania parasitised RAW 264.7 cells, Phytochem., 2005, 66, 2056 Google Scholar

  • [20] Akagawa M., Suyama K., Amine oxidase-like activity of polyphenols. Mechanism and properties, Eur. J. Biochem., 2001, 268, 1953 Google Scholar

  • [21] Erel-Unal I., Sukhishvili S.A., Hydrogen-bonded Multilayers of a Neutral Polymer and a Polyphenol, Macromol., 2008, 41, 3962 CrossrefGoogle Scholar

  • [22] Kozlovskaya V., Kharlampieva E., Drachuk I., Cheng D., Tsukruk V.V., Responsive microcapsule reactors based on hydrogen-bonded tannic acid layer-by-layer assemblies, Soft Matter, 2010, 6, 3596 Web of ScienceCrossrefGoogle Scholar

  • [23] Kim B.S., Lee H., Min Y.H., Poon Z., Hammond P.T., Hydrogen-bonded multilayer of pH-responsive polymeric micelles with tannic acid for surface drug delivery, Chem. Commun., 2009, 28, 4194 CrossrefWeb of ScienceGoogle Scholar

  • [24] D.J. Schmidt, P.T. Hammond, Electrochemically erasable hydrogen-bonded thin films, Chem. Commun., 2010, 46, 7358 Web of ScienceCrossrefGoogle Scholar

  • [25] Šimor M., Ráhel J., Vojtek P., Brablec A., Cernák M., Atmospheric-pressure diffuse coplanar surface discharge for surface treatments, Appl. Phys. Lett., 2002, 81, 2716 CrossrefGoogle Scholar

  • [26] Cernák M., Cernáková L., Hudec I., Kovácik D., Zahoranová A., Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials, Eur. Phys. J. Appl. Phys., 2009, 47, 22806 Web of ScienceCrossrefGoogle Scholar

  • [27] Cernák M., Kovácik D., Ráhel J., Stahel P., Zahoranová A., Kubincová J., Tóth A., Cernáková L., Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing, Plasma Phys. Control. Fusion, 2011, 53, 124031 CrossrefWeb of ScienceGoogle Scholar

  • [28] Vesel A. and Mozetic M., Surface functionalization of organic materials by weakly ionized highly dissociated oxygen plasma, Journal of Physics: Conference Series, 2009, 162, 012015 Google Scholar

  • [29] Gerenser L.J., Surface Chemistry of Plasma-Treated Polymers, in Handbook of Thin Film Process Technology, ed D A Glocker and S I Shah (IOP, Bristol), 1996 Google Scholar

  • [30] Zhou L., Chen M., Tian L., Gian Y., Zhang Y., Release of Polyphenolic Drugs from Dynamically Bonded Layer-by-Layer Films, Appl. Mater. Interfaces, 2013, 5, 3541 CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2014-02-12

Accepted: 2014-05-07

Published Online: 2014-12-22


Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0072.

Export Citation

© 2015 András Tóth et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A Zeniou, N Puač, N Škoro, N Selaković, P Dimitrakellis, E Gogolides, and Z Lj Petrović
Journal of Physics D: Applied Physics, 2017, Volume 50, Number 13, Page 135204

Comments (0)

Please log in or register to comment.
Log in