Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1 (Jan 2015)

Issues

Calorimetric study of activated carbons impregnated with CaCl2

Diana Paola Vargas
  • Corresponding author
  • Departamento de Química. Facultad de Ciencias. Universidad Nacional de Colombia. Avenida Carrera 30 No. 45-03. Bogotá
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Liliana Giraldo
  • Departamento de Química. Facultad de Ciencias. Universidad Nacional de Colombia. Avenida Carrera 30 No. 45-03. Bogotá
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juan Carlos Moreno-Piraján
  • Departamento de Química. Facultad de Ciencias. Universidad Nacional de Colombia. Avenida Carrera 30 No. 45-03. Bogotá
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-12 | DOI: https://doi.org/10.1515/chem-2015-0075

Abstract

Activated carbon monoliths with different surface characteristics were prepared by impregnating oil palm stone with diluted aqueous CaCl2 solutions (with concentrations between 2 and 7% w/v) without binders. The solids were characterized by determination of nitrogen adsorption isotherms at 77 K and carbon dioxide adsorption isotherms at 273 K using volumetric adsorption equipment. Surface area and micropore volume values were calculated from the nitrogen isotherms using the BET and DR models, respectively, obtaining solids with low percentages of mesoporosity. Immersion enthalpies of the activated carbon monoliths were determined in benzene, with values between -173 and -104 J g-1, and water, with values between 61 and 30 J g-1, indicating that the monoliths have a hydrophobic character.

Graphical Abstract

Keywords : activated carbon monoliths; CaCl2 impregnation; N2 adsorption; CO2 adsorption; immersion enthalpies

References

  • [1] Wang, Z.T.; Fu, Z.K; Zhang, B.; Wang, G.X.; Rudolph, V.; Huo, L. Adsorption and desorption on coals for CO2 sequestration. Min Sci Technol, 2009, 19, 8-13 Google Scholar

  • [2] Drage, T.C.; Kozynchenko, O.; Pevida, C.; Plaza, M.G.; Rubiera, F.; Pis, J.J.; Snape, C.E.; Tennison S. Developing activated carbon adsorbents for pre-combustion CO2 capture. Energy Procedia, 2009, 1, 599-605 Google Scholar

  • [3] González, J.C.; González, M.T.; Molina-Sabio, M; Rodríguez- Reinoso, F; Sepúlveda, A. Porosity of activated carbons prepared from different lignocellulosic materials. Carbon, 1995, 33, 1175-1177 Google Scholar

  • [4] Zhou, L.; Liu, X.; Li, J.; Wang, N.; Wang, Z.; Zhou, Y. Synthesis of ordered mesoporous carbon molecular sieve and its adsorption capacity for H2, N2, O2, CH4 and CO2. Chem. Phys. Lett., 2005, 413, 6-9 Google Scholar

  • [5] Alcañiz-Monge, J.; Marco-Lozar, J.P.; Lillo-Ródenas, M.A. CO2 separation by carbon molecular sieve monoliths prepared from nitrated coal tar pitch. Fuel Process Technol., 2011, 92, 915-919 Web of ScienceGoogle Scholar

  • [6] Mohan, D.; Singh, K.P.; Vinod, K. Wastewater treatment using low cost activated carbons derived from agricultural byproducts. J. Hazard Mat., 2008, 152, 1045-1053 Google Scholar

  • [7] Giraldo, L.; Moreno-Piraján, J.C. Synthesis of Activated Carbon Honeycomb Monoliths under Different Conditions for the Adsorption of Methane. Adsorption Science & Technology, 2009, 27, 255-265 Web of ScienceCrossrefGoogle Scholar

  • [8] Rodriguez Reinoso, F.; Almansa, C.; Molina, Sabio M. Adsorption of methane into ZnCl2 activated carbon derived disc. Micropor Mesopor Mat., 2004, 76, 185-191 Google Scholar

  • [9] Vargas, D.P.; Giraldo, L.; Silvestre-Albero, J.; Moreno-Piraján, J.C. CO2 adsorption on binderless activated carbon monoliths. Adsorption, 2011, 17, 497-504 CrossrefWeb of ScienceGoogle Scholar

  • [10] Vargas, D.P.; Giraldo, L.; Ladino, Y.; Moreno, J.C. Síntesis y caracterización de monolitos de carbón activado utilizando como precursor cáscara de coco. Afinidad, 2009, 66, 38-43 Google Scholar

  • [11] Juárez-Galán, J.M.; Silvestre-Albero, A.; Silvestre-Albero, J.; Rodríguez-Reinoso, F. Synthesis of activated carbon with highly developed ‘‘mesoporosity”. Micropor Mesopor Mat., 2009, 117, 519–521 Web of ScienceGoogle Scholar

  • [12] Nakagawa, Y.; Molina-Sabio, M.; Rodríguez Reinoso, F. Modification of the porous structure along the preparation of activated carbon monoliths with H3PO4 and ZnCl2. Micropor Mesopor Mat., 2007,103, 29-34 Web of ScienceGoogle Scholar

  • [13] Martín, M.J. Adsorción física de gases y vapores por carbones. Alicante, Universidad de Alicante (Publicaciones) 1988 Google Scholar

  • [14] Moreno-Piraján, J.C.; Giraldo, L.; Vargas, D.P. Determination of Energy Characteristic and Microporous Volume by Immersion Calorimetry in Carbon Monoliths. E-Journal of Chemistry, 2012, 9, 650-658 Google Scholar

  • [15] Sing, K. S. W.; Everett, D. H.; Haul, R.A.W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. (Reporting physisorption data for gas/solid systems with Special Reference to the Determination of Surface Area and Porosity. Pure & Applied Chemistry, 1985, 57, 603-619 Google Scholar

  • [16] Rios, R.V.; Silvestre-Albero, J.; Sepulveda-Escribano, A.; Molina- Sabio, M.; Rodríguez-Reinoso, F. Kinetic Restrictions in the Characterization of Narrow Microporosity in Carbon Materials. J. Phys. Letters, 2007, 111, 3803-3805 Google Scholar

  • [17] Zuo, S.; Yang, J.; Liu, J.; Cai, X. Significance of the carbonization of volatile pyrolytic products on the properties of activated carbons from phosphoric acid activation of lignocellulosic material. Fuel Process Technol, 2009, 90, 994-1001 Web of ScienceGoogle Scholar

  • [18] Stoeckli, F.; Centeno, T.A. On the determination of surface areas in activated carbons. Carbon, 2005, 43, 1184-1190 Google Scholar

  • [19] Giraldo, L.; Moreno-Pirajan, J.C. Calorimetric determination of activated carbons in aqueous solutions. J. Therm. Anal. Cal., 2007, 89, 589-594 Google Scholar

  • [20] Denoyel, R.; Fernandez-Colinas, J.; Grillet, Y.; Rouquerol, J. Assessment of the surface area and microporosity of activated charcoals from immersion calorimetry and nitrogen adsorption data. Langmuir, 1993, 9, 515-518 CrossrefGoogle Scholar

  • [21] Giraldo, L.; Moreno, J.C. Determination of the Immersion Enthalpy of activated carbon by Microcalorimetry of the Heat Conduction. Instrum Sci Technol., 2000, 28, 171-178 CrossrefGoogle Scholar

About the article

Received: 2014-06-16

Accepted: 2014-08-18

Published Online: 2015-01-12


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0075.

Export Citation

© 2015 Diana Paola Vargas et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in