Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Simulation of alpha dose for predicting radiolytic species at the surface of spent nuclear fuel pellets

Frank Becker
  • Corresponding author
  • Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology (KIT), Hermann-von- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bernhard Kienzler
  • Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology (KIT), Hermann-von- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-23 | DOI: https://doi.org/10.1515/chem-2015-0076


In many countries, spent nuclear fuel is considered as a waste form to be disposed of in underground disposal. Under deep host rock conditions, a reducing environment prevails. In the case of water contact, long-term radionuclide release from the fuel depends on dissolution processes of the UO2 matrix. The dissolution rate of irradiated UO2 is controlled by oxidizing processes facilitated by dissolved species formed by alpharadiolysis of water in contact with spent nuclear fuel. To understand the effect of the radiation, the information of the dose rate at the surface of the fuel and its proximity is needed. α particles contribute strongly due to their high linear energy transfer. However, their dose rate and the energy deposition at the fuel surface are difficult to measure. Cylindrical fuel pellets as used in fuel rods show specific features, such as the rim zone, where a higher Pu concentration and a different porosity of the fuel matrix is present. The a particle dose rate was determined by simulations with the code MCNPX with focus on the rim zone of a pellet. As a result a 40% increased dose level in the rim zone exists in comparison to the center of a pellet. The potential dominant and inhomogeneous α-dose distribution is supposed to have a strong impact on radiolysis phenomena and in turn on an inhomogeneous dissolution of elements over the surface.

Keywords : High burn-up spent nuclear fuel; RIM zone; MCNPX; dose distribution


  • [1] Pérez del Villar L., Bruno J., Campos R., Gómez P., Cózar J.S., Garralón A., et al., The uranium ore from Mina Fe (Salamanca, Spain) as a natural analogue of processes in a Used Fuel repository, Chem. Geol., 2002, 190, 395-415 Google Scholar

  • [2] Shoesmith D.W., Fuel corrosion processes under waste disposal conditions, J. Nucl. Mater., 2000, 282, 1-31 Google Scholar

  • [3] Spahiu K., Eklund U.-B., Cui D., and Lundström M., The influence of near-field redox conditions on Spent Fuel leaching, Mater. Res. Soc. Symp. P., 2002, 713, 633-638 Google Scholar

  • [4] Stroes-Gascoyne S., Garisto F., and Betteridge J.S., The effects of alpha-radiolysis on UO2 dissolution determined from batch experiments with 238Pu-doped UO2, J. Nucl. Mater., 2005, 346, 5-15 Google Scholar

  • [5] McNamara B., Buck E.C., and Hanson B., Observation of studtite and metastudtite on spent fuel, Mater. Res. Soc. Symp. P., 2003, 757, 401-406 Google Scholar

  • [6] Burns P.C., Ewing R.C., Navrotsky A., Nuclear fuel in a reactor accident, Science, 2012, 335, 1184-1188 Web of ScienceGoogle Scholar

  • [7] Hughes-Kubatko K.-A., Helean K.B., Navrotsky A., and Burns P.C., Stability of peroxide-containing uranyl minerals, Science, 2003, 302, 1191-1193 Google Scholar

  • [8] Sunder S., Calculation of radiation dose rates in a water layer in contact with used CANDU UO2 fuel, Nuclear Technology, 1998, 122, 211-221 Google Scholar

  • [9] Metz V., Geckeis H., Gonzalez-Robles E., Loida A., Bube C., and Kienzler B., Radionuclide behaviour in the near-field of a geological repository for spent nuclear fuel, Radiochim. Acta, 2012, 100, 699–713 Google Scholar

  • [10] Bruno J. and Ewing R.C., Spent Nuclear Fuel, Elements, 2006, 2, 343–349 Google Scholar

  • [11] Pelowitz D.B., MCNPX User‘s Manual Version 2.6.0, Los Alamos National Laboratory, Tech. Rep. LA-CP-07-1473, 2008 Google Scholar

  • [12] Kernkraftwerk Gösgen-Däniken AG (KKG), Broschüre Technik und Betrieb, 2010, http://www.kkg.ch/upload/cms/user/KKG_ Broschre_D_2010.pdf (in German) Google Scholar

  • [13] Kienzler B., Metz V., Duro L., and Valls E.A., 1st Annual Workshop Proceedings of the Collaborative Project ‚FIRST-Nuclides‘, Karlsruhe Institute of Technology (KIT), Karlsruhe KIT-SR 7639, 2013 Google Scholar

  • [14] Bohnert E., Bube C., Janata E., Kelm M., Kienzler B., Metz V. et al., In KIT SCIENTIFIC REPORTS 7559 - Annual Report 2009, Institute for Nuclear Waste Disposal, H. Geckeis, T. Stumpf (eds.), 2010, 36-40, ISSN 1869-9669 Google Scholar

  • [15] Serrano-Purroy D., Casas I., González-Robles E., Glatz J.P., Wegen D.H., Clarens F., et al., Dynamic leaching studies of 48 MWd/kgU UO2 commercial spent nuclear fuel under oxic conditions; J. Nucl. Mater., 2013, 434(1-3), 451-460 Web of ScienceGoogle Scholar

  • [16] Spino J., Vennix K., and Coquerelle M., Detailed characterisation of the rim microstructure in PWR fuels in the burn-up range 40–67 GWd/tM, J. Nucl. Mater., 1996, 231(3), 179-190 Google Scholar

  • [17] webKorigen, Nucleonica GmbH, Nucleonica Nuclear Science Portal, 2011, www.nucleonica.com Google Scholar

  • [18] Hacker C., Radiation Decay (RadDecay) 3.6 software, 2014, http://www.radprocalculator.com/RadDecay.aspx Google Scholar

  • [19] Becker F., Zimmermann Ch., Poyo-Terrero M., Zhang G., and Kienzler B., In KIT SCIENTIFIC REPORTS 7587 – Jahresbericht 2010, Institut für Strahlenforschung, J. U. Knebel U. Mohr (eds.), Simulationen zur α-Dosisleistung in einer Wasserschicht an der Oberfläche eines Kernbrennstoff-Pellets, 2011, 28-31, ISSN 1869-9669 (in German) Google Scholar

  • [20] Werme L., Sellin P., and Forsyth R., Radiolytically induced oxidative dissolution of spent nuclear fuel, Swedish Nuclear Fuel and Waste Management Co (SKB), 1990, TR 90-08 Google Scholar

  • [21] Carbol P., Fors P., Van Winckel S., and Spahiu K., Corrosion of irradiated MOX fuel in presence of dissolved H2, J. Nucl. Mater., 2009, 392, 45-54 Google Scholar

  • [22] Ekeroth E., Roth O., and Jonsson M., The relative impact of radiolysis products in radiation induced oxidative dissolution of UO2, J. Nucl. Mater., 2006, 355, 38-4 Google Scholar

  • [23] Jégou C., Muzeau B., Broudic V., Peuget S., Poulesquen A., Roudil D., et al., Effect of external gamma irradiation on dissolution of the spent UO2 fuel matrix, J. Nucl. Mater., 2005, 341, 62-82 Google Scholar

About the article

Received: 2014-02-28

Accepted: 2014-08-04

Published Online: 2014-12-23

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0076.

Export Citation

© 2015 Frank Becker, Bernhard Kienzler. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in