Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Characterization and photocatalytic activity of Ti/TinOm ∙ ZrxOy coatings for azo-dye degradation

Nickolay Sakhnenko
  • Corresponding author
  • Department of Physical Chemistry, The National Technical University of Ukraine, “Kharkov Polytechnic Institute”, Kharkov 61002, Ukraine
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marina Ved
  • Department of Physical Chemistry, The National Technical University of Ukraine, “Kharkov Polytechnic Institute”, Kharkov 61002, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Victoria Bykanova
  • Department of Physical Chemistry, The National Technical University of Ukraine, “Kharkov Polytechnic Institute”, Kharkov 61002, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kostiantyn Nikiforow
  • Department of Soft Condensed Matter and Fluids, Institute of Physical Chemistry Polish Academy of Sciences, Warsaw 02-224, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-30 | DOI: https://doi.org/10.1515/chem-2015-0078


Anodic oxidation of VT1-0 titanium and E-125 zirconium alloy in aqueous electrolyte solutions based on H2SO4 and K4P2O7 was used to obtain oxide coatings composed of Zr/ZrO2, Ti/TiO2, and mixed oxide systems Ti/TinOm ∙ ZrxOy. It was shown that, depending on the electrolyte рН, the films contained from 0.17 to 2.1% wt. of zirconium. The catalytic activity of the synthesized coatings in the oxidation reaction of the methyl orange azo dye under UV irradiation was established. The process rate constants and synergy factors for the mixed systems were calculated.

Keywords : Ti/TinOm ∙ ZrxOy coatings; Electrochemical anodization; Photocatalyst activity; Azo dyes; Methyl orange


  • [1] Zhao L., Liu Y., Wang L., Zhao H., Production of Rutile TiO2 Pigment from Titanium Slag Obtained by Hydrochloric Acid Leaching of Vanadium-Bearing Titanomagnetite, Indust. & Eng. Chem. Res., 2014, 53, 70-77. CrossrefGoogle Scholar

  • [2] Marinel S., Choi D.H., Heuguet R., Agrawal D., Broadband dielectric characterization of TiO2 ceramics sintered through microwave and conventional processes, Ceramics International, 2013, 39, 299-306. Google Scholar

  • [3] Nisar J., Topalian Z., De Sarkar A., Esterlund L., TiO2-Based Gas Sensor: A Possible Application to SO2, ACS Appl. Mater. Interf., 2013, 17, 8516-8522. Google Scholar

  • [4] Fujishima M., Jin Q., Yamamoto H., Tada H., Tin oxide-surface modified anatase titanium (IV) dioxide with enhanced UV-light photocatalytic activity, Phys. Chem. Chem. Phys., 2012, 14, 705- 711. Web of ScienceCrossrefGoogle Scholar

  • [5] Klare M., Waldner G., Bauer R., Jacobs H., Degradation of nitrogen containing organic compounds by combined photocatalysis and ozonation, Chemosph., 1999, 38, 2013-2027. Google Scholar

  • [6] Kim J., Monllor-Satoca D., Choi W., Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components, En. Environ. Sci., 2012, 5, 7647-7656. Google Scholar

  • [7] Shen Y., Friend C.S., Jiang Y., Jakubczyk D., Nanophotonics: Interactions, Materials, and Applications, J. Phys. Chem. B. 2000, 104, 7577-7588. Google Scholar

  • [8] Chai S., Zhao G., Li P., Lei Y., Novel Sieve-Like SnO2/TiO2 Nanotubes with Integrated Photoelectrocatalysis: Fabrication and Application for Efficient Toxicity Elimination of Nitrophenol Wastewater, J. Phys. Chem. C., 2011, 115, 18261-18269. Google Scholar

  • [9] Zhang Z., Yuan Y., Fang Y., Liang L., Preparation of photocatalytic nano-ZnO/TiO2 film and application for determination of chemical oxygen demand, Talanta, 2007, 73, 523-528. Google Scholar

  • [10] Garcнa-Ramнrez E., Mondragуn-Chaparro M., Zelaya-Angel O., Band gap coupling in photocatalytic activity in ZnO–TiO2 thin films, Appl. Phys. A: Mater. Sci. Proc., 2012, 108 (2), 291-297. CrossrefGoogle Scholar

  • [11] Zhu J., Yang D., Geng J., Chen D., Synthesis and characterization of bamboo-like CdS/TiO2 nanotubes composites with enhanced visible-light photocatalytic activity, J. Nanopart. Res., 2008, 10, 729-736. CrossrefWeb of ScienceGoogle Scholar

  • [12] Bayati M. R., Golestani-Fard F., Moshfegh A.Z., Photo- Degradation of Methelyne Blue over V2O5–TiO2 Nano-Porous Layers Synthesized by Micro Arc Oxidation, Catal. lett., 2010, 134, 162-168. Google Scholar

  • [13] Hirano M., Ota K., Direct Formation and Photocatalytic Performance of Anatase (TiO2)/Silica (SiO2) Composite Nanoparticles, J. Americ. Ceram. Soc., 2004, 87 (8), 1567-1570. Google Scholar

  • [14] Luo Q., Cai Q., Li X., Pan Z., Preparation and characterization of ZrO2/TiO2 composite photocatalytic film by micro-arc oxidation, Transact. Nonfer. Metals Soc. China., 2013, 23, 2945-2950. Google Scholar

  • [15] Maver K., Śtangar U.L., Иernigoj U., Gross S., Lowtemperature synthesis and characterization of TiO2 and TiO2– ZrO2photocatalytically active thin films, 2009, J. Photochem. Photobiol. 8 (5), 657-662 CrossrefGoogle Scholar

  • [16] Gnatyuk Yu.I., Yatskiv V.I., Smirnova N.P., Granchak V.M., Photocatalytic properties of mesoporous TiO2/ZrO2 films in gas-phase oxidation of alcohols, Theor. Exper. Chem., 2005, 41 (6), 371-376. CrossrefGoogle Scholar

  • [17] Liu H., Liu G., Zhou Q., Preparation and characterization of Zr doped TiO2 nanotube arrays on the titanium sheet and their enhanced photocatalytic activity, J. Solid State Chem., 2009, 182, 3238-3242. Google Scholar

  • [18] Qiu S., Starr T.L., Zirconium Doping in Titanium Oxide Photocatalytic Films Prepared by Atomic Layer Deposition., J. Electrochem. Soc., 2007, 154 (6), 472-475. Web of ScienceGoogle Scholar

  • [19] Hernandez–Alonso M.D., Tejedor-Tejedor I., Coronado J.M., Sol–gel preparation of TiO2–ZrO2 thin films supported on glass rings: Influence of phase composition on photocatalytic activity, Thin Solid Films, 2006, 502, 125-131. Google Scholar

  • [20] Ismail A.A., Bahnemann D.W., Mesoporous titania photocatalysts: preparation, characterization and reaction mechanismsе, J. Mater. Chem., 2011, 21, 11686-11707. CrossrefWeb of ScienceGoogle Scholar

  • [21] Zhao J.L., Wang X.H., Chen R.Z., Li L.T., Fabrication of titanium oxide nanotube arrays by anodic oxidation, Solid State Commun., 2005, 134, 705-710. Google Scholar

  • [22] Macak J.M., Taveira L.V., Tsuchiya H., Sirotna K., Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization, J. Electroceram., 2006, 16, 29-34. Google Scholar

  • [23] Buldakov D.А., Petyhov D.I., Kolesnic I.V., Термическая стабильность пористых пленок анодного оксида титана, Rossiisk. Nanotech., 2009, 4 (5–6), 78-82. Google Scholar

  • [24] Isaev A.B., Magomedova G.A., Zakargaeva N.A., Influence of O2 pass on the photocatalytic oxidation of chromic azo-dye with TiO2 application, Kinet. Catal. 2011, 52 (2), 204-208. CrossrefGoogle Scholar

  • [25] Elinson S.V., Petrov K.I., Analytical chemistry of zirconium and gafnium, Science, Moscow, 1985. Google Scholar

  • [26] Silva C.G., Synthesis, Spectroscopy and Characterization of Titanium Dioxide Based Photocatalysts for the Degradative Oxidation of Organic Pollutants, Universidade do Porto, 2008. Google Scholar

About the article

Received: 2014-05-29

Accepted: 2014-09-29

Published Online: 2014-12-30

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0078.

Export Citation

© 2015 Nickolay Sakhnenko et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Nives Vodišek, Kandalam Ramanujachary, Vlasta Brezová, and Urška Lavrenčič Štangar
Catalysis Today, 2017, Volume 287, Page 142

Comments (0)

Please log in or register to comment.
Log in