Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

Generation of High Frequency Pin-hole Discharge in Water Solutions

František Krčma
  • Corresponding author
  • Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zdenka Kozáková
  • Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Michal Vašíček
  • Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-30 | DOI: https://doi.org/10.1515/chem-2015-0080

Abstract

This paper presents results on electric discharge generation by high frequency high voltage (15–100 kHz) in NaCl solutions with different initial conductivity (100–1300 mS cm-1), and compares them with DC discharge in the same electrode configuration. A batch plasma reactor in the pin-hole configuration contained a ceramic dielectric barrier separating two planar stainless steel electrodes; barrier thickness of 0.6 mm and pin-hole diameter of 0.6 mm was used. Lissajous charts were evaluated from electric measurements for different discharge phases (electrolysis, bubble formation and discharge regular operation). Breakdown moments for different solution conductivities were determined from discharge power evaluation as a function of applied frequency. Breakdown voltage amplitude was decreased by the increasing conductivity in both regimes while frequency and current decreased. Changes of physical parameters (temperature, solution conductivity and pH) as well as production of hydrogen peroxide at different solution conductivities were compared. Solution conductivity was increased in both discharge regimes and with the initial conductivity value. Solution temperature was increased by the discharge in both regimes and with the increasing initial conductivity, too. Solution pH dropped to acidic conditions when HF or DC positive regime was applied while it was enhanced by DC negative regime.

Keywords : discharges in liquids; electric measurements; breakdown parameters; solution conductivity; hydrogen peroxide generation

References

  • [1] Kozáková Z., Nejezchleb M., Krčma F., Halamová I., Čáslavský J., Dolinová J., Removal of Organic Dye Direct Red 79 from Water Solutions by DC Diaphragm Discharge: Analysis of Decomposition Products, Desalination, 2010, 258, 93-99. Web of ScienceGoogle Scholar

  • [2] Sugiarto A.T., Ito S., Ohshima T., Sato M., Skalný J.D., Oxidative decoloration of dyes by pulsed discharge in water, J. Electrostatics, 2003, 58, 135-145. Google Scholar

  • [3] Marsili L., Espie S., Anderson J.G., MacGregor S.J., Plasma inactivation of food-related microorganisms in liquids, Radiat. Phys. Chem., 2002, 65, 507-513. Google Scholar

  • [4] Klíma M., Slavíček P., Šíra M., Čižmár T., Vaněk P., HF plasma pencil and DC diaphragm discharge in liquids – diagnostics and applications, Czech. J. Phys., 2006, 56, B1051-B1056. Google Scholar

  • [5] Thagard S.M., Takashima K., Mizuno A., Electrical discharges in polar organic liquids, Plasma Process. Polym., 2009, 6, 741-750. CrossrefWeb of ScienceGoogle Scholar

  • [6] De Baerdemaeker F., Monte M., Leys C., Capillary Underwater Discharges, IEEE Trans. Plasma Sci., 2005, 33, 492-493. Google Scholar

  • [7] Hong Y.Ch., Kang W.S., Hong Y.B., Yi W.J., Uhm H.S., Plasma formation using a capillary discharge in water and its application to the sterilization of E. coli, Phys. Plasmas, 2010, 17, 053502-1- 053502-5. Web of ScienceGoogle Scholar

  • [8] Ceccato P., Rousseau A., In: Proceedings of 28th International Conference on Phenomena in Ionized Gases, (15-20 July 2007, Praha, Czech Republic), 2007, 1172-1174. Google Scholar

  • [9] Locke B.R., Lukes P., Brisset J-L., In: V.I. Parvulescu, M. Magureanu, P. Lukes (Eds.), Plasma Chemistry and Catalysis in Gases and Liquids (Wiley-VCH, 2012), DOI: 10.1002/9783527649525.ch6 CrossrefGoogle Scholar

  • [10] Stará Z., Krčma F., Degradation of Organic Dyes Versus H2O2 Generation During the DC Diaphragm Discharge Treatment in Water Solutions, Acta Physica Slovaca, 2005, 55, 515-519. Google Scholar

  • [11] Stará Z., Krčma F., Procházková J., Physical Aspects of Diaphragm Discharge Creation Using Constant DC High Voltage in Electrolyte Solution, Acta Technica CSAV, 2008, 53, 277-286. Google Scholar

  • [12] Joshi A.A., Locke B.R., Arce P., Finney W.C., Formation of hydroxyl radicals, hydrogen peroxide and aqueous electrons by pulsed streamer corona discharge in aqueous solution, J. Hazard. Mater., 1995, 41, 3-30. Google Scholar

  • [13] Šunka P., Babický V., Člupek M., Fuciman M., Lukeš P., Šimek M., et al., Potential applications of pulse electrical discharges in water, Acta Physica Slovaca, 2004, 54, 135-145. Google Scholar

  • [14] Wagner H.E., Brandenburg R., Kozlov K.V., Sonnenfeld A., Michel P., Behnke J.F., The barrier discharge: basic properties and applications to surface treatment, Vacuum, 2003, 71, 417- 436. Google Scholar

  • [15] Eisenberg G.M., Colorimetric determination of hydrogen peroxide, Ind. Eng. Chem., Anal. Ed., 1943, 15, 327-328. CrossrefGoogle Scholar

  • [16] Teslenko V.S., Drozhzhin A.P., Kartashov A.M., Autooscillations generated during a diaphragm discharge in an electrolyte, Tech. Phys. Lett., 2001, 27, 883-885. Google Scholar

  • [17] Teslenko V.S., Drozhzhin A.P., Sankin G.N., Autocyclic Circular Breakdowns with Induced Bubble Collapse in Electrolyte, Tech. Phys. Lett., 2006, 32, 149-152. Google Scholar

  • [18] Bruggemann P.. Degroote J., Leys C., Vierendeels J., Electrical discharges in the vapour phase in liquid-filled capillaries, J. Phys. D: Appl. Phys., 2008, 41, 194007. Web of ScienceGoogle Scholar

  • [19] Kozáková Z., Hlavatá L., Krčma F., In: V. Aubrecht, M. Bartlova (Eds.), Proceedings of 18th Symposium on Physics of Switching Arc (7-11 September 2009, Brno, Czech Republic), 2009, 226-229 Google Scholar

  • [20] Kozáková Z., Hlavatá L., Krčma F., In: C. Leys, R. Morent (Eds.), Proceedings of 4th International Workshop on Cold Atmospheric Pressure Plasmas: Sources and Applications (22-24 June 2009, Ghent, Belgium), 2009, 58-61. Google Scholar

  • [21] Stará Z., Krčma F., Nejezchleb M., Skalný J.D., Organic Dye Decomposition by DC Diaphragm Discharge in Water: Effect of Solution Properties on Dye Removal, Desalination, 2009, 239, 283-294. Web of ScienceGoogle Scholar

  • [22] Krčma F., Stará Z., Procházková J., Diaphragm Discharge in Liquids: Fundamentals and Applications, J. Phys. – Conf. Ser., 2010, 207, 012010. Google Scholar

  • [23] Stará Z., Krčma F., The Study of H2O2 Generation by DC Diaphragm Discharge in Liquids, Czech. J. Phys., 2004, 54, C1050-C1055. Google Scholar

About the article

Received: 2013-11-28

Accepted: 2014-11-17

Published Online: 2014-12-30


Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0080.

Export Citation

© 2015 František Krčma et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in