Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

Volume 13 (2015)

Structural and morphological properties of HA-ZnO powders prepared for biomaterials

Marioara Moldovan
  • Corresponding author
  • Babeș Bolyai University – “Raluca Ripan” Chemistry Research Institute, 30 Fantanele street, 400294, Cluj-Napoca, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Doina Prodan
  • Babeș Bolyai University – “Raluca Ripan” Chemistry Research Institute, 30 Fantanele street, 400294, Cluj-Napoca, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Violeta Popescu / Cristina Prejmerean
  • Babeș Bolyai University – “Raluca Ripan” Chemistry Research Institute, 30 Fantanele street, 400294, Cluj-Napoca, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Codruta Saroși
  • Babeș Bolyai University – “Raluca Ripan” Chemistry Research Institute, 30 Fantanele street, 400294, Cluj-Napoca, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Monica Saplonţai / Stefan Țălu / Eugeniu Vasile
Published Online: 2015-01-28 | DOI: https://doi.org/10.1515/chem-2015-0083

Abstract

The purpose of this study was to investigate the structural and morphological properties of hydroxyapatite – zinc oxide (HA-ZnO) powders prepared to be used in an endodontic sealer formulation. The HA-ZnO was synthesized from hydroxyapatite (HA) in the presence of zinc oxide (ZnO) sol. The starting reagents were CaO, H3PO4 and a suspention of ZnO (25% in water). Following precipitation, the obtained sol was subjected to heat treatment at 110°C, 400°C, 850°C and 1050°C. The study focused on the influence of the thermal treatment on the cristallinity of precipitated powders. X-ray diffraction was used in order to study the structural properties of the obtained powder. Fourier Transform Infrared Spectroscopy (FT-IR) was used in order to evaluate the interactions between HA and ZnO. The morphology of the samples was studied by Scanning Electron Microscopy (SEM). Transmission Electron Microscopy and High Resolution Transmission Electron Microscopy (TEM, HRTEM) were used for the determination of particle size and fractal analysis. The fractal analysis of images using the standard box-counting method is presented and the results are discussed. It was demonstrated that the fractal dimension analysis is a useful method to quantitatively describe the complex microstructures and it can reveal the relation between fractal parameters.

Graphical Abstract

Keywords : hydroxyapatite; zinc oxide; nanoparticles; biomaterials; fractal analysis

References

  • [1] Kohsuke M., Yohei M., Takayoshi H., Tomoo M., Kohki E., Kiyotomi K., A single-site hydroxyapatite-bound zinc catalyst for highly efficient chemical fixation of carbon dioxide with epoxides, Chem. Commun., 2005, 3331–3333. Google Scholar

  • [2] Aderemi O., Bushra P., Safiyyah H., Adeniji S., Henry D., Preparation and in vitro bioactivity of zinc containing sol-gel– derived bioglass materials, Biomed J., Mate.r Res. A., 2004, 69(2), 216-221. Google Scholar

  • [3] Aina V., Malavasi G., Fiorio Pla A., Munaron L., Morterra C., Zinccontaining bioactive glasses: Surface reactivity and behaviour towards endothelial cells, Acta Biomaterialia 5, 2009, 1211- 1222. CrossrefGoogle Scholar

  • [4] Vojislav S., Dimitrijević S., Antić-Stanković J., Mitrić M., Jokić B., Plećaš I. et al., Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders, Applied Surface Science, 2010, 256, 6083-6089. Google Scholar

  • [5] Yuanzhi T., Chappell H.F., Dove M.T., Reeder R.J., Lee Y.J., Zinc incorporation into hydroxylapatite, Biomaterials 30, 2009, 2864-2872. Web of ScienceGoogle Scholar

  • [6] Zhou G., Yubao Li, Wei Xiao, Li Zhang, Yi Zuo, Jing Xue et al., Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex, Wiley Periodicals, Inc. J. Biomed. Mater. Res. 85A, 2008, 929-937. Google Scholar

  • [7] Gross K.A., Komarovska L., Viksna A., Efficient zinc incorporation in hydroxyapatite through crystallization of an amorphous phase could extend the properties of zinc apatites, Journal of the Australian Ceramic Society Volume, 2013, 49Google Scholar

  • [2], 129–135. Google Scholar

  • [8] Tavassoli S., Alaghemand H., Hamze F., Ahmadian Babaki F, Rajab-Nia R, Bagher Rezvani M. et al., Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles, Dental Materials, 2013, 29, 495–505. Web of ScienceGoogle Scholar

  • [9] Horiuchi S, Hiasa M, Yasue A, Sekine K, Hamada K, Asaoka K et al., Fabrications of zinc releasing biocement combining zinc calcium phosphate to calcium phosphate cement, Journal of the mechanical behavior of biomedical materials, 2014, 29, 151 – 160. Google Scholar

  • [10] Toledano M., Sauro S., Cabello I., Watson T., Osorio R., A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface, Dental Materials, 2013, 29, 142–152. Web of ScienceGoogle Scholar

  • [11] Sutha S, Karunakaran S.G., Rajendran V., Enhancement of antimicrobial and long-term biostability of the zinc-incorporated hydroxyapatite coated 316L stainless steel implant for biomedical application, Ceramics International, 2013, 39, 5205–5212. Web of ScienceGoogle Scholar

  • [12] Mandelbrot B.B., The Fractal Geometry of Nature, Freeman W. H., San Francisco, USA, 1982. Google Scholar

  • [13] Trif M., Moldovan M., Prejmerean C., Tamas C., Furtos G., Colceriu A. et al., Microcristaline hydroxyapatite. Obtaining and investigation, Journal of Optoelectron Adv. Material, 2007, 9(11), 3312-3315. Google Scholar

  • [14] Kraus W., Nolze G., Powder Cell, Appl J. Crystallogr., 1996, 29, 301-303. Google Scholar

  • [15] van Bercum J.G.M., Vermeulen A.C., Delhez R., de Keijser T.H., Mittemeijer E.M., Applicabilities of Warren–Averbach analysis and alternative analysis for separation of size and strain broadening, J.Appl. Phys., 1994, 27, 345-353. Google Scholar

  • [16] Indrea E., Barbu A., Indirect photon interaction in PbS photodetectors, Appl. Surf. Sci., 1996, 106, 498-501. Google Scholar

  • [17] Rasband W., National Institutes of Health, Bethesda, Maryland, USA. Available from URL:http://imagej.nih.gov/ij/. Google Scholar

  • [18] Karperien A., Charles Sturt University, Australia. Available from URL: http://rsbweb.nih.gov/ij/plugins/fraclac/FLHelp/ Introduction. html Google Scholar

  • [19] Aldea N., Indrea E., XRLINE, a program to evaluate the crystallite size of supported metal catalysts by single X-ray profile Fourier analysis, Comput. Phys. Commun., 1990, 60, 155-163. Google Scholar

  • [20] Tripathi A., Saravanan S., Pattnaik S., Moorthi A., Partridge N.C., Selvamurugan N., Bio-composite scaffolds containing chitosan/ nano-hydroxyapatite/nano-copper–zinc for bone tissue engineering, International Journal of Biological Macromolecules, 2012, 50, 294–299. Google Scholar

  • [21] JCPDS-International Center for Diffraction Data, PDF No. 89-7102, 1950. Google Scholar

  • [22] JCPDS-International Center for Diffraction Data, PDF No. 74-0566, 1997. Google Scholar

  • [23] Ślósarczyk A., Paszkiewicz Z., Paluszkiewicz C., FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods, Journal of Molecular Structure, 2005, 657–661, 744–747. Google Scholar

  • [24] Le Geros R.Z., Calcium Phosphates in Oral Biology and Medicine. H.M. Myers, Karger, Basel, 1991. Google Scholar

  • [25] Mobasherpour I., Heshajin M. S., Kazemzadeh A., Zakeri M., Synthesis of Nanocrystalline Hydroxyapatite by using Precipitation Method, Journal of Alloys and Compounds, 2007, 430, 330 – 333. Google Scholar

  • [26] Prakash K.H., Ooi C.P., Kumar R., Khor K.A., Cheang P., Effect of Super Saturation Level on the size and morphology of Hydroxyapatite precipitate, Conference Proceeding: Emerging Technologies - Nanoelectronics, 2006, 345-349. Google Scholar

  • [27] Brie M., Grecu R., Moldovan M., Prejmerean C., Muşat O., Vezsenyi M.,The optical properties of some dimethacrylic composites, Materials Chemistry and Physics, 1999, 60, 240-246. Google Scholar

About the article

Received: 2013-10-15

Accepted: 2014-08-21

Published Online: 2015-01-28


Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0083.

Export Citation

© 2015 Marioara Moldovan et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M. Ding, N. Sahabgharani, F. Musharavati, F. Jaber, E. Zalnezhad, and G.H. Yoon
Ceramics International, 2018
[2]
Ştefan Ţălu, Carlos Luna, Azin Ahmadpourian, Amine Achour, Ali Arman, Sirvan Naderi, Nader Ghobadi, Sebastian Stach, and Behroz Safibonab
Journal of Materials Science: Materials in Electronics, 2016, Volume 27, Number 11, Page 11425
[3]
R.M. Parreira, T.L. Andrade, A.P. Luz, V.C. Pandolfelli, and I.R. Oliveira
Ceramics International, 2016, Volume 42, Number 10, Page 11732
[4]
Alia Méndez, Yolanda Reyes, Gabriel Trejo, Krzysztof StĘpień, and Ştefan Ţălu
Microscopy Research and Technique, 2015, Volume 78, Number 12, Page 1082
[5]
Ştefan Ţălu, Sebastian Stach, Boris Klaić, Tea Mišić, Jadranka Malina, and Asja Čelebić
Microscopy Research and Technique, 2015, Volume 78, Number 9, Page 831

Comments (0)

Please log in or register to comment.
Log in