Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Unexpected formation of [M]2+ from [M+CuCl+H]2+ ions under CID conditions, where M is a molecule of 3,5-bis(2,2’-bipyridin-4-ylethynyl)benzoic acid or its methyl ester

Rafał Frański
  • Corresponding author
  • Adam Mickiewicz University, Faculty of Chemistry, Umultowska 89B, 61-614 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maciej Zalas / Błażej Gierczyk / Michał Cegłowski / Grzegorz Schroeder / Tomasz Kozik / Marcin Hoffmann
Published Online: 2015-01-07 | DOI: https://doi.org/10.1515/chem-2015-0085


[M+CuCl+H]2+ ions were generated using electrospray ionization (ESI); where M is a molecule of 3,5-bis(2,2’-bipyridin-4-ylethynyl)benzoic acid or its methyl ester (1 and 2, respectively). The ions were subjected to CID-MS/MS analysis. It was found that their gas phase decomposition lead to the formation of rare di-cations [M]2+, namely [1]2+ and [2]2+ ions. The formation of [1]2+ ion from [3+H+CuCl]2+ ion in the second fragmentation, where 3 is ethyl ester of 3,5-bis(2,2-bipyridin-4-ylethynyl)benzoic acid, was also observed since in the first fragmentation step the loss of ethylene molecule from [3+H+CuCl]2+ ion took place. To the best of our knowledge, it is the first time that [M]2+ ions formation from respective metal complexes has been reported. It is also unusual that formation of [M]2+ ions is not accompanied by formation of [M]+∙ ions. Furthermore, as expected, theoretical calculation and electron ionization mass spectra show that 1 and 2 are not especially prone to form [M]2+ ions. Thus formation of [M]2+ ions under CID conditions is very surprising.

Graphical Abstract

Keywords : di-cation; copper complexes; electrospray ionization mass spectrometry; collision induced dissociation


  • [1] Winters R.E., Kiser R.W., Doubly charged transition metal carbonyl ions, J. Phys. Chem., 1966,70, 1680-1681 CrossrefGoogle Scholar

  • [2] Meyerson S., Vander Haar R.W., Multiply charged organic ions in mass spectra, J. Chem. Phys., 1962, 37, 2458-2462 Google Scholar

  • [3] Wolkenstein K., Gross J.H., Oeserb T., Schölera H.F., Spectroscopic characterization and crystal structure of the 1,2,3,4,5,6-hexahydrophenanthroGoogle Scholar

  • [1,10,9,8-opqra]perylene, Tetr. Lett., 2002, 43, 1653-1655 Google Scholar

  • [4] Gorączko A.J., Szewczykowska K., Detection of symmetrical decomposition of molecules-isotopomeric analysis of the M/2 clusters, J. Mol. Model., 2009, 15, 747-758 Web of ScienceCrossrefGoogle Scholar

  • [5] Abliz Z., Aoki J., Ueda T., Kan T., Takekawa M., Iwashima S., Electron impact mass spectra of polycyclic aromatic compounds with several types of pyridino- and benzobenzanthrone skeletons, Org. Mass Spectrom., 1993, 28, 607-614 Google Scholar

  • [6] Schröder D., Schwarz H., Generation, stability, and reactivity of small, multiply charged ions in the gas phase, J. Phys. Chem. A, 1999, 103, 7385-7394 Google Scholar

  • [7] Barlow C.K., McFadyen W.D., O’Hair R.A.J., Formation of cationic peptide radicals by gas-phase redox reactions with trivalent chromium, manganese, iron, and cobalt complexes, J. Am. Chem. Soc., 2005, 127, 6109-6115 Google Scholar

  • [8] Bagheri-Majdi E., Ke Y., Orlova G., Chu I.K., Hopkinson A.C., Siu K.W.M., Copper-mediated peptide radical ions in the gas chase, J. Phys. Chem. B, 2004, 108, 11170-11181 CrossrefGoogle Scholar

  • [9] Tureček F., Copper-biomoecule complexes in the gas phase. The ternary way, Mass Spectrom. Rev., 2007, 26, 563-582 CrossrefGoogle Scholar

  • [10] Chu I.K., Laskin J., Formatin of peptide radical ions through dissociative electron transfer in ternary metal-ligand-peptide complexes, Eur. J. Mass Spectrom., 2011, 17, 543-556 CrossrefGoogle Scholar

  • [11] Barlow C.K., Moran D., Radom L., McFadyen W.D., O’Hair R.A.J., Metal-mediated formation of gas-phase amino acid radical cations, J. Phys. Chem. A, 2006, 110, 8304-8315 CrossrefGoogle Scholar

  • [12] Chu I.K., Rodriguez C.F., Hopkinson A.C., Siu K.W.M., Lau T.-C., Formation of molecular radical cations of enkephalin derivatives via collision-induced dissociation of electrospray-generated copper (II) complex ions of amines and peptides, J. Am. Soc. Mass Spectrom., 2001, 12, 1114-1119 Google Scholar

  • [13] Wee S., O’Hair R.A.J., McFadyen W.D., Can radical cations of the constituent of nucleic acids be formed in the gas phase using ternary transition metal complexes? Rapid Commun. Mass Spectrom., 2005, 19, 1797-1805 Google Scholar

  • [14] Schäfer M., Drayß M., Springer A., Zacharias P., Meerholz K., Radical cations in electrospray mass spectrometry: Formation of open-shell species, examination of the fragmentation behaviour in ESI-MSn and reaction mechanism studies by detection of transient radical cations, Eur. J. Org. Chem. 2007, 2007, 5162- 5174 Web of ScienceCrossrefGoogle Scholar

  • [15] Vessecchi R., Crotti A.E.M., Guaratini T., Colepicolo P., Galembeck S.E., Lopes N.P., Radical ion generation processes of organic compounds in electrospray ionization mass spectrometry, Mini- Rev. Org. Chem., 2007, 4, 75-87 Web of ScienceCrossrefGoogle Scholar

  • [16] Guaratini T., Gates P.J., Pinto E., Colepicolo P, Lopes N.P., Differential ionisation of natural antioxidant polyenes in electrospray and nanospray mass spektrometry, Rapid Commun. Mass Spectrom., 2007, 21, 3842-3848 Google Scholar

  • [17] Guaratini T., Vessecchi R.L., Lavarda F.C., Campos P.M.B.G.M., Naal Z., Gates P.J., Lopes N.P., New chemical evidence for the ability to generate radical molecular ions of polyenes from ESI and HR-MALDI mass spektrometry, Analyst, 2004, 129, 1223- 1226 Google Scholar

  • [18] Van Berkel G.J., Zhou F., Observation of gas-phase molecular dications formed from neutral organics in solution via the controlled-current electrolytic process inherent to electrospray, J. Am. Soc. Mass Spectrom., 1996, 7, 157-162 Google Scholar

  • [19] Rondeau D., Martineau C., Blanchard P., Roncali J., Probing electrochemical properties of π-conjugated thienylenevinylenes/ fullerene C60 adducts by ESI/MS: evidence for dimerized cation–radicals, J. Mass Spectrom., 2002, 37, 1081-1085 Google Scholar

  • [20] McCarley T.D., Lufaso M.W., Curtin L.S., McCarley R.L., Multiply charged redox-active oligomers in the gas phase: electrolytic electrospray ionization mass spectrometry of metallocenes, J. Phys. Chem. B, 1998, 102, 10078-10086 CrossrefGoogle Scholar

  • [21] Zhang T., Palii S.P., Eyler J.R., Brajter-Toth A., Enhancement of ionization efficiency by electrochemical reaction products in on-line electrochemistry/electrospray ionization fourier transform ion cyclotron resonance mass spektrometry, Anal. Chem., 2002, 74, 1097-1103 CrossrefGoogle Scholar

  • [22] Zalas M., Gierczyk B., Cegłowski M., Schroeder G., Synthesis of new dendritic antenna-like polypyridine ligands, Chem. Papers, 2012, 66, 733-740 Web of ScienceCrossrefGoogle Scholar

  • [23] Chai J.-D., Head-Gordon M., Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, Phys. Chem. Chem. Phys., 2008, 10, 6615-6620 Web of ScienceCrossrefGoogle Scholar

  • [24] Salzner U., Aydin A., Improved prediction of properties of π-conjugated oligomers with range-separated hybrid density functionals, J. Chem. Theory Comput., 2011, 7, 2568-2583 CrossrefWeb of ScienceGoogle Scholar

  • [25] Karwowski B.T., Ionisation potential and electron affinity of free 5′,8-cyclopurine-2′-deoxynucleosides. DFT study in gaseous and aqueous phase, Centr. Eur. J. Chem., 2010, 8, 70-76 Web of ScienceGoogle Scholar

  • [26] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010 Google Scholar

  • [27] Frański R., Kowalska M., Czerniel J., Zalas M., Gierczyk B., Cegłowski M., Schroeder G., Copper complexes formed by 3,5-bis(2,2′-bipyridin-4-ylethynyl)benzoic acid and its methyl and ethyl esters as studied by electrospray ionization mass spectrometry, Cent. Eur. J. Chem., 2013, 11, 2066-2075 Web of ScienceGoogle Scholar

  • [28] Walker N.R., Grieves G.A., Jaeger J.B., Walters R.S., Duncan M.A., Generation of “unstable” doubly charged metal ion complexes in a laser vaporization cluster source Int. J. Mass Spectrom., 2003, 228, 285-295 Google Scholar

  • [29] Nibbering N.M., The McLafferty rearrangement: A personal recollection, J. Am. Soc. Mass Spectrom., 2004, 15, 956-958 Google Scholar

About the article

Received: 2014-01-21

Accepted: 2014-10-28

Published Online: 2015-01-07

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0085.

Export Citation

© 2015 Rafał Frański et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in