Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Activated carbons for the removal of heavy metal ions: A systematic review of recent literature focused on lead and arsenic ions

Eleni A. Deliyanni
  • Corresponding author
  • Division of Chemical Technology & Industrial Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ George Z. Kyzas
  • Division of Chemical Technology & Industrial Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kostas S. Triantafyllidis
  • Division of Chemical Technology & Industrial Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kostas A. Matis
  • Division of Chemical Technology & Industrial Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-13 | DOI: https://doi.org/10.1515/chem-2015-0087


This work is a systematic review of the literature over the past decade of the application of activated carbon (microporous or mesoporous) as adsorbents for the removal of heavy metals, focusing especially on lead (Pb) and arsenic (As) ions from the aqueous phase. Classical examples from our lab are also given. Activated carbon is known to provide a high surface area for adsorption. Generally, surface modification is typically required, such as oxidation, treatment with ammonia or even impregnation with ferric ion, etc. and the adsorbent material may originate from various sources. The pristine materials, after modification and those after batch-wise adsorption, were characterized by available techniques (BET analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, thermal analyses, X-ray photoelectron spectroscopy). Adsorption isotherms, thermodynamics and kinetics of the process are also discussed. Selected studies from the literature are examined in comparison with other adsorbents. The role of chemistry in the metals adsorption/removal was investigated.

Graphical Abstract

Keywords : adsorption; lead; arsenic; wastewaters


  • [1] http://www.watertechonline.com/articles/activated-carbonregeneration- or-reactivation (access 28 Aug 2014), Google Scholar

  • [2] http://www.calgoncarbon.com/products/activated_carbon_ reactivation/faq (access 28 Aug 2014), Google Scholar

  • [3] Ahn C.K., Park D., Woo S.H.,Park J.M., Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants, J. Hazard. Mater., 2009, 164, 1130- 1136. Google Scholar

  • [4] Amirnia S., Margaritis A.,Ray M., Adsorption of mixtures of toxic metal ions using non-viable cells of saccharomyces cerevisiae, Adsorpt. Sci. Technol., 2012, 30, 43-63. Google Scholar

  • [5] Amuda O.S., Giwa A.A.,Bello I.A., Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon, Biochem. Eng. J., 2007, 36, 174-181. Google Scholar

  • [6] Asouhidou D.D., Triantafyllidis K.S., Lazaridis N.K., Matis K.A., Kim S.S.,Pinnavaia T.J., Sorption of reactive dyes from aqueous solutions by ordered hexagonal and disordered mesoporous carbons, Micropor. Mesopor. Mater., 2009, 117, 257-267. Google Scholar

  • [7] Babel S.,Kurniawan T.A., Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan, Chemosphere, 2004, 54, 951-967. Google Scholar

  • [8] Baccar R., Bouzid J., Feki M.,Montiel A., Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions, J. Hazard. Mater., 2009, 162, 1522-1529. Google Scholar

  • [9] Baniamerian M.J., Moradi S.E., Noori A.,Salahi H., The effect of surface modification on heavy metal ion removal from water by carbon nanoporous adsorbent, Appl. Surf. Sci., 2009, 256, 1347-1354. Google Scholar

  • [10] Bilal M., Shah J.A., Ashfaq T., Gardazi S.M.H., Tahir A.A., Pervez A., et al., Waste biomass adsorbents for copper removal from industrial wastewater—A review, J. Hazard. Mater., 2013, 263, Part 2, 322-333. Google Scholar

  • [11] Budaeva A.D.,Zoltoev E.V., Porous structure and sorption properties of nitrogen-containing activated carbon, Fuel, 2010, 89, 2623-2627. Google Scholar

  • [12] Câmpean A., Tertiş M.,Sǎndulescu R., Voltammetric determination of some alkaloids and other compounds in pharmaceuticals and urine using an electrochemically activated glassy carbon electrode, Cent. Eur. J. Chem., 2011, 9, 688-700. Google Scholar

  • [13] Chang Q., Lin W.,Ying W.C., Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water, J. Hazard. Mater., 2010, 184, 515-522. Google Scholar

  • [14] Chen W., Parette R., Zou J., Cannon F.S.,Dempsey B.A., Arsenic removal by iron-modified activated carbon, Water Res., 2007, 41, 1851-1858. Google Scholar

  • [15] Chuang C.L., Fan M., Xu M., Brown R.C., Sung S., Saha B., et al., Adsorption of arsenic(V) by activated carbon prepared from oat hulls, Chemosphere, 2005, 61, 478-483. Google Scholar

  • [16] Dabioch M., Skorek R., Kita A., Janoska P., Pytlakowska K., Zerzucha P., et al., A study on adsorption of metals by activated carbon in a large-scale (municipal) process of surface water purification, Cent. Eur. J. Chem., 2013, 11, 742-753. Google Scholar

  • [17] Deliyanni E., Arabatzidou A., Tzoupanos N.,Matis K., Adsorption of Pb2+ using mesoporous activated carbon and its effects on surface modifications, Adsorpt. Sci. Technol., 2012, 30, 627-645. Google Scholar

  • [18] Deliyanni E.,Bandosz T.J., Effect of carbon surface modification with dimethylamine on reactive adsorption of NOx, Langmuir, 2011, 27, 1837-1843. Google Scholar

  • [19] Deliyanni E.,Bandosz T.J., Importance of carbon surface chemistry in development of iron-carbon composite adsorbents for arsenate removal, J. Hazard. Mater., 2011, 186, 667-674. Google Scholar

  • [20] Deliyanni E., Bandosz T.J.,Matis K.A., Impregnation of activated carbon by iron oxyhydroxide and its effect on arsenate removal, J. Chem. Technol. Biotechnol., 2013, 88, 1058-1066. Google Scholar

  • [21] Deliyanni E.A., Peleka E.N.,Matis K.A., Modeling the sorption of metal ions from aqueous solution by iron-based adsorbents, J. Hazard. Mater., 2009, 172, 550-558. Google Scholar

  • [22] Deng L., Su Y., Su H., Wang X.,Zhu X., Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis, J. Hazard. Mater., 2007, 143, 220-225. Google Scholar

  • [23] Depci T., Kul A.R.,Önal Y., Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: Study in single- and multi-solute systems, Chem. Eng. J., 2012, 200-202, 224-236. Google Scholar

  • [24] Eliyas A.E., Ljutzkanov L., Stambolova I.D., Blaskov V.N., Vassilev S.V., Razkazova-Velkova E.N., et al., Visible light photocatalytic activity of TiO2 deposited on activated carbon, Cent. Eur. J. Chem., 2013, 11, 464-470. Google Scholar

  • [25] Fan L., Chen Y., Wang L.,Jiang W., Adsorption of Pb(II) ions from aqueous solutions by pyrolusite-modified activated carbon prepared from sewage sludge, Adsorpt. Sci. Technol., 2011, 29, 495-506. CrossrefGoogle Scholar

  • [26] Fierro V., Muñiz G., Gonzalez-Sánchez G., Ballinas M.L.,Celzard A., Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis, J. Hazard. Mater., 2009, 168, 430-437. Google Scholar

  • [27] Fu F.,Wang Q., Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 2011, 92, 407-418. Google Scholar

  • [28] Gu Z., Deng B.,Yang J., Synthesis and evaluation of ironcontaining ordered mesoporous carbon (FeOMC) for arsenic adsorption, Micropor. Mesopor. Mater., 2007, 102, 265-273. Google Scholar

  • [29] Gupta V.K., Ganjali M.R., Nayak A., Bhushan B.,Agarwal S., Enhanced heavy metals removal and recovery by mesoporous adsorbent prepared from waste rubber tire, Chem. Eng. J., 2012, 197, 330-342. Google Scholar

  • [30] Hernández-Montoya V., Mendoza-Castillo D.I., Bonilla-Petriciolet A., Montes-Morán M.A.,Pérez-Cruz M.A., Role of the pericarp of Carya illinoinensis as biosorbent and as precursor of activated carbon for the removal of lead and acid blue 25 in aqueous solutions, Journal of Analytical and Applied Pyrolysis, 2011, 92, 143-151. Google Scholar

  • [31] Huang C.-C., Li H.-S.,Chen C.-H., Effect of surface acidic oxides of activated carbon on adsorption of ammonia, J. Hazard. Mater., 2008, 159, 523-527. Google Scholar

  • [32] Jasiñska J., Krzyžyñska B.,Kozłowski M., Influence of activated carbon modifications on their catalytic activity in methanol and ethanol conversion reactions, Cent. Eur. J. Chem., 2011, 9, 925-931. Google Scholar

  • [33] Jiang J.Q.,Ashekuzzaman S.M., Development of novel inorganic adsorbent for water treatment, Curr. Opinion Chem. Eng., 2012, 1, 191-199. Google Scholar

  • [34] Kalavathy M.H., Karthikeyan T., Rajgopal S.,Miranda L.R., Kinetic and isotherm studies of Cu(II) adsorption onto H3PO 4-activated rubber wood sawdust, J. Colloid Interface Sci., 2005, 292, 354-362. Google Scholar

  • [35] Kasnejad M.H., Esfandiari A., Kaghazchi T.,Asasian N., Effect of pre-oxidation for introduction of nitrogen containing functional groups into the structure of activated carbons and its influence on Cu (II) adsorption, J. Taiwan Inst. Chem. Eng., 2012, 43, 736-740. Google Scholar

  • [36] Kim E.A., Seyfferth A.L., Fendorf S.,Luthy R.G., Immobilization of Hg(II) in water with polysulfide-rubber (PSR) polymer-coated activated carbon, Water Res., 2011, 45, 453-460. Google Scholar

  • [37] Kyzas G.Z., Deliyanni E.A.,Matis K.A., Graphene oxide and its application as an adsorbent for wastewater treatment, J. Chem. Technol. Biotechnol., 2014, 89, 196-205. Google Scholar

  • [38] Kyzas G.Z.,Kostoglou M., Green adsorbents for wastewaters: A critical review, Materials, 2014, 7, 333-364. Google Scholar

  • [39] Lalhmunsiama, Lee S.M.,Tiwari D., Manganese oxide immobilized activated carbons in the remediation of aqueous wastes contaminated with copper(II) and lead(II), Chem. Eng. J., 2013, 225, 128-137. Google Scholar

  • [40] Le Leuch L.M.,Bandosz T.J., The role of water and surface acidity on the reactive adsorption of ammonia on modified activated carbons, Carbon, 2007, 45, 568-578. Google Scholar

  • [41] Lehmann M., Zouboulis A.I.,Matis K.A., Removal of metal ions from dilute aqueous solutions: A comparative study of inorganic sorbent materials, Chemosphere, 1999, 39, 881-892. Google Scholar

  • [42] Li Y., Du Q., Wang X., Zhang P., Wang D., Wang Z., et al., Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation, J. Hazard. Mater., 2010, 183, 583-589. Google Scholar

  • [43] Lo S.-F., Wang S.-Y., Tsai M.-J.,Lin L.-D., Adsorption capacity and removal efficiency of heavy metal ions by Moso and Ma bamboo activated carbons, Chem. Eng. Res. Des., 2012, 90, 1397-1406. Google Scholar

  • [44] Lorenzen L., van Deventer J.S.J.,Landi W.M., Factors affecting the mechanism of the adsorption of arsenic species on activated carbon, Miner. Eng., 1995, 8, 557-569. CrossrefGoogle Scholar

  • [45] Machida M., Fotoohi B., Amamo Y., Ohba T., Kanoh H.,Mercier L., Cadmium(II) adsorption using functional mesoporous silica and activated carbon, J. Hazard. Mater., 2012, 221-222, 220-227. Google Scholar

  • [46] Marsh H.,Reinoso-Rodriguez F.: 2012, Activated carbon, London, UK, Elsevier. Google Scholar

  • [47] Modin H., Persson K.M., Andersson A.,van Praagh M., Removal of metals from landfill leachate by sorption to activated carbon, bone meal and iron fines, J. Hazard. Mater., 2011, 189, 749-754. Google Scholar

  • [48] Mohammadi S.Z., Karimi M.A., Afzali D.,Mansouri F., Preparation and characterization of activated carbon from Amygdalus Scoparia shell by chemical activation and its application for removal of lead from aqueous solutions, Cent. Eur. J. Chem., 2010, 8, 1273-1280. Google Scholar

  • [49] Mohammadi S.Z., Karimi M.A., Afzali D.,Mansouri F., Removal of Pb(II) from aqueous solutions using activated carbon from Sea-buckthorn stones by chemical activation, Desalination, 2010, 262, 86-93. Google Scholar

  • [50] Mohan D.,Pittman Jr C.U., Arsenic removal from water/ wastewater using adsorbents-A critical review, J. Hazard. Mater., 2007, 142, 1-53. Google Scholar

  • [51] Mondal P., Majumder C.B.,Mohanty B., Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon, J. Hazard. Mater., 2008, 150, 695-702. Google Scholar

  • [52] Moreno-Piraján J.C.,Giraldo L., Activated carbon from bamboo waste modified with iron and its application in the study of the adsorption of arsenite and arsenate, Cent. Eur. J. Chem., 2013, 11, 160-170. Google Scholar

  • [53] Muñiz G., Fierro V., Celzard A., Furdin G., Gonzalez-Sánchez G., Ballinas M.L., Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II), J. Hazard. Mater., 2009, 165, 893-902. Google Scholar

  • [54] Nowicki P., Kuszyńska I., Przepiórski J.,Pietrzak R., The effect of chemical activation method on properties of activated carbons obtained from pine cones, Cent. Eur. J. Chem., 2013, 11, 78-85. Google Scholar

  • [55] Park H.G., Kim T.W., Chae M.Y.,Yoo I.K., Activated carboncontaining alginate adsorbent for the simultaneous removal of heavy metals and toxic organics, Process Biochem., 2007, 42, 1371-1377. Google Scholar

  • [56] Peleka E.N.,Matis K.A., Water separation processes and sustainability, Ind. Eng. Chem. Res., 2011, 50, 421-430. CrossrefGoogle Scholar

  • [57] Phuengprasop T., Sittiwong J.,Unob F., Removal of heavy metal ions by iron oxide coated sewage sludge, J. Hazard. Mater., 2011, 186, 502-507. Google Scholar

  • [58] Pyrzyńska K.,Bystrzejewski M., Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles, Colloid Surf. A., 2010, 362, 102-109. Google Scholar

  • [59] Rivera-Utrilla J.,Sánchez-Polo M., Adsorption of Cr(III) on ozonised activated carbon. Importance of Cπ—cation interactions, Water Res., 2003, 37, 3335-3340. Google Scholar

  • [60] Rivera-Utrilla J., Sánchez-Polo M., Gómez-Serrano V., Álvarez P.M., Alvim-Ferraz M.C.M.,Dias J.M., Activated carbon modifications to enhance its water treatment applications. An overview, J. Hazard. Mater., 2011, 187, 1-23. Google Scholar

  • [61] Seredych M., Hulicova-Jurcakova D., Lu G.Q.,Bandosz T.J., Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon, 2008, 46, 1475-1488. Google Scholar

  • [62] Shrestha R.M., Varga I., Bajtai J.,Varga M., Design of surface functionalization of waste material originated charcoals by an optimized chemical carbonization for the purpose of heavy metal removal from industrial waste waters, Microchem. J., 2013, 108, 224-232. Google Scholar

  • [63] Şváb M., Sukdolová K.,Şvábová M., Competitive adsorption of toxic metals on activated carbon, Cent. Eur. J. Chem., 2011, 9, 437-445. Google Scholar

  • [64] Tovar-Gómez R., Rivera-Ramírez D.A., Hernández-Montoya V., Bonilla-Petriciolet A., Durán-Valle C.J.,Montes-Morán M.A., Synergic adsorption in the simultaneous removal of acid blue 25 and heavy metals from water using a Ca(PO 3) 2-modified carbon, J. Hazard. Mater., 2012, 199-200, 290-300. Google Scholar

  • [65] Treviño-Cordero H., Juárez-Aguilar L.G., Mendoza-Castillo D.I., Hernández-Montoya V., Bonilla-Petriciolet A.,Montes-Morán M.A., Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water, Industrial Crops and Products, 2013, 42, 315-323. Google Scholar

  • [66] Vuković G.D., Marinković A.D., Škapin S.D., Ristić M.T., Aleksić R., Perić-Grujić A.A., et al., Removal of lead from water by amino modified multi-walled carbon nanotubes, Chem. Eng. J., 2011, 173, 855-865. Google Scholar

  • [67] Wang L., Zhang J., Zhao R., Li Y., Li C.,Zhang C., Adsorption of Pb(II) on activated carbon prepared from Polygonum orientale Linn.: Kinetics, isotherms, pH, and ionic strength studies, Bioresour. Technol., 2010, 101, 5808-5814. Google Scholar

  • [68] Xue Y., Gao B., Yao Y., Inyang M., Zhang M., Zimmerman A.R., et al., Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests, Chem. Eng. J., 2012, 200-202, 673-680. Google Scholar

  • [69] Zaini M.A.A., Okayama R.,Machida M., Adsorption of aqueous metal ions on cattle-manure-compost based activated carbons, J. Hazard. Mater., 2009, 170, 1119-1124. Google Scholar

  • [70] Zhu H., Jia Y., Wu X.,Wang H., Removal of arsenic from water by supported nano zero-valent iron on activated carbon, J. Hazard. Mater., 2009, 172, 1591-1596. Google Scholar

  • [71] Zouboulis A.I., Kydros K.A.,Matis K.A., Flotation of powdered activated carbon with adsorbed gold(I)-thiourea complex, Hydrometallurgy, 1994, 36, 39-51. Google Scholar

About the article

Received: 2014-07-28

Accepted: 2014-09-19

Published Online: 2015-01-13

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0087.

Export Citation

© 2015 Eleni A. Deliyanni et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Laura Bulgariu, Leticia Belén Escudero, Olugbenga Solomon Bello, Munawar Iqbal, Jan Nisar, Kayode Adesina Adegoke, Fadi Alakhras, Michael Kornaros, and Ioannis Anastopoulos
Journal of Molecular Liquids, 2018
Ioannis Anastopoulos, Artis Robalds, Hai Nguyen Tran, Dimitris Mitrogiannis, Dimitrios A. Giannakoudakis, Ahmad Hosseini-Bandegharaei, and Guilherme L. Dotto
Environmental Chemistry Letters, 2018
Mohammed F. Hamza, Fadia Y. Ahmed, Ibrahim El-Aassy, Amr Fouda, and Eric Guibal
Water, Air, & Soil Pollution, 2018, Volume 229, Number 11
George Kyzas and Kostas Matis
Processes, 2018, Volume 6, Number 8, Page 116
Sandesh Y. Sawant, Radheshyam R. Pawar, Seung-Mok Lee, and Moo Hwan Cho
Journal of Cleaner Production, 2017
Chainarong Sakulthaew, Chanat Chokejaroenrat, Amnart Poapolathep, Tunlawit Satapanajaru, and Saranya Poapolathep
Chemosphere, 2017, Volume 184, Page 1168
Bingbing Li, Feng Zhou, Kai Huang, Yipei Wang, Surong Mei, Yikai Zhou, and Tao Jing
Scientific Reports, 2017, Volume 7, Page 43082
Branislav Jović, Branko Kordić, Vukoslava Miškov, Jelena Tričković, Marina Kovačević, and Slobodan Petrović
Arabian Journal of Chemistry, 2017
Kexiang Liu, Tao Huang, Xiao Huang, Lin Yu, Faheem Muhammad, Binquan Jiao, and Dongwei Li
Scientific Reports, 2016, Volume 6, Number 1
Karla Marlene Mena Aguilar, Yoshimasa Amano, and Motoi Machida
Journal of Environmental Chemical Engineering, 2016, Volume 4, Number 4, Page 4644
Muhammad Haroon, Li Wang, Haojie Yu, Nasir M. Abbasi, Zain-ul-Abdin Zain-ul-Abdin, Muhammad Saleem, Rizwan Ullah Khan, Raja Summe Ullah, Qing Chen, and Jialiang Wu
RSC Adv., 2016, Volume 6, Number 82, Page 78264
Himani Uppal, Hemlata, Jai Tawale, and Nahar Singh
Journal of Environmental Chemical Engineering, 2016, Volume 4, Number 3, Page 2964
George Z. Kyzas and Kostas A. Matis
Journal of Molecular Liquids, 2016, Volume 220, Page 657
H. Sharififard, F. Pepe, M. Soleimani, P. Aprea, and D. Caputo
RSC Adv., 2016, Volume 6, Number 49, Page 42845
Nasir M.A. Al-Lagtah, Ala'a H. Al-Muhtaseb, Mohammad N.M. Ahmad, and Yousef Salameh
Microporous and Mesoporous Materials, 2016, Volume 225, Page 504
Nasir M.A. Al-Lagtah, Alaa H. Al-Muhtaseb, Mohammad N.M. Ahmad, and Yousef Salameh
Arabian Journal of Chemistry, 2015

Comments (0)

Please log in or register to comment.
Log in