Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Armchair Boron Nitride nanotubes—heterocyclic molecules interactions: A computational description

Ernesto Chigo Anota
  • Corresponding author
  • Autonomous University of Puebla, Faculty of Chemical Engineering, Ciudad Universitaria, San Manuel, Puebla, Código Postal 72570, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gregorio Hernández Cocoletzi
  • Autonomous University of Puebla, Institute of Physics ‘Luis Rivera Terrazas’, Apartado Postal J-48, Puebla 72570, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andres Manuel Garay Tapia
  • Materials Advanced Research Center, S.C., Alianza Norte 202, Nueva Carretera Aeropuerto Km 10, Apodaca, NL., C.P. 66600, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-16 | DOI: https://doi.org/10.1515/chem-2015-0088


Ab-initio calculations using density functional theory (DFT) are used to investigate the non-covalent interactions between single wall armchair boron nitride nanotubes (BNNTs) with open ends and several heterocyclic molecules: thiophene (T; C4H4S), benzothiophene (BT; C8H6S) and dibenzothiophene (DBT; C12H8S). In the armchair model the nanotubes exhibit (n, n) chirality; here we consider n = 5. The exchange-correlation energies are treated according to the Hamprecht-Cohen-Tozer-Handy functional in the generalized gradient approximation (HCTH-GGA). A base function with double polarization is used. The geometry optimization of (5,5) BNNT-X; X = T, BT and DBT has been carried out using the minimum energy criterion in 5 different configurations of the molecules adsorbed on the nanotube. Our computer simulations have found that the preferential adsorption site of the molecule on the nanotube surface is the parallel configuration for BT and DBT, and at one nanotube end for the T fragment, with all cases having physical interactions. The polarity exhibits an increase which favors the possible dispersion, provided the electrons are polarized. The nanostructure functionalization increases the chemical reactivity which in turn enhances interactions between the molecule and the nanotube. The BNNT-dibenzothiophene work function reduction as compared with the pristine case yields the improvement of the field emission properties.

Graphical Abstract

Keywords : Boron Nitride nanotubes; Thiophene; Benzothiophene; Dibenzothiophene; Work function; DFT theory


  • [1] Rubio A., Corkill J. L., Cohen M., Theory of graphitic boron nitride nanotubes, Phys. Rev. B, 1994, 49, 5081-5084 Google Scholar

  • [2] Chopra N. G., Luyken R. J., Cherrey K, Crespi V. H., Cohen M. L., Louie S. G., Zetl A., Boron Nitride Nanotubes, Science 1995, 269, 966-967 Google Scholar

  • [3] Golberg D., Bando Y., Unique morphologies of boron nitride nanotubes, Appl. Phys. Lett. 2001, 79, 415-417 Google Scholar

  • [4] Huei Lee C., Zhang D., Khin Yap Y., Functionalization, Dispersion, and Cutting of Boron Nitride Nanotubes in Water, J. Phys. Chem. C 2012, 116, 1798- 1804 Web of ScienceGoogle Scholar

  • [5] Raffa V., Riggio C., Smith M. W., Jordan K. C., Cao W., Cuschieri A., BNNT-mediated irreversible electroporation: its potential on cancer cells, Technol. Cancer Res. Treat. 2012, 11, 459-465 Web of ScienceGoogle Scholar

  • [6] Ciofani G., Raffa V., Menciassi A., Cuschieri A., Boron nitride nanotubes: an innovative tool for nanomedicine, Nano Today 2009, 4, 8-10 CrossrefWeb of ScienceGoogle Scholar

  • [7] Wu J., Yin L., Platinum Nanoparticle Modified Polyaniline- Functionalized Boron Nitride Nanotubes for Amperometric Glucose Enzyme Biosensor, ACS Appl. Mater. Interfaces 2011, 3, 4354-4362 Web of ScienceCrossrefGoogle Scholar

  • [8] Gao Zh., Zhi Ch., Bando Y., Golberg D., Serizawa T., Noncovalent Functionalization of Disentangled Boron Nitride Nanotubes with Flavin Mononucleotides for Strong and Stable Visible-Light Emission in Aqueous Solution, ACS Appl. Mater. Interfaces 2011, 3, 627-632 Web of ScienceCrossrefGoogle Scholar

  • [9] Zhi C. Y., Bando Y., Tang C., Honda S., Sato K., Kuwahara H., Golberg D., Characteristics of Boron Nitride Nanotube– Polyaniline Composites, Angew. Chem. Int. Ed. 2005, 44, 7929- 7932 Google Scholar

  • [10] Xie S. Y., Wang W., Fernando K. A. S., Wang X., Lin Y., Sun Y. P., Solubilization of boron nitride nanotubes, Chem. Commun. 2005, 29, 3670-3672 Google Scholar

  • [11] Rodríguez Juárez A., Chigo Anota E., Hernández Cocoletzi H., Flores Riveros A., Adsorption of chitosan on BN nanotubes: A DFT investigation Appl. Surf. Sci. 2013, 268, 259-264 Web of ScienceGoogle Scholar

  • [12] Saikia N., Pati S. K., Deka R. C., First principles calculation on the structure and electronic properties of BNNTs functionalized with isoniazid drug molecule, Appl. Nanosci. 2012, 2, 389-400 CrossrefGoogle Scholar

  • [13] Chigo Anota E., Hernández Rodríguez L. D., Hernández Cocoletzi G., Influence of point defects on the adsorption of chitosan on Graphene-like BN nanosheets, Graphene 2013, 1 (2), 124-130 Google Scholar

  • [14] Chigo Anota E., Rodríguez Juárez A., Castro M., Hernández Cocoletzi H., A density functional theory analysis for the adsorption of the amine group on Graphene and Boron Nitride Nanosheets,J. Mol. Model. 2013, 19 (1), 321-328 CrossrefWeb of ScienceGoogle Scholar

  • [15] McKee H. C., Herndon L. K., Withrow J. R., Estimation of Thiophene in Gasoline, Anal. Chem. 1948, 20 (4), 301-303 CrossrefGoogle Scholar

  • [16] Moore R. J., Greensfelder B. S., The Catalytic Synthesis of Benzothiophene, J. Am. Chem. Soc. 1947, 69 (8), 2008-2009 Google Scholar

  • [17] Chigo Anota E., Hernández Cocoletzi G., GGA-based analysis of the metformin adsorption on BN Nanotubes, Physica E 2014, 56, 134-140 Web of ScienceGoogle Scholar

  • [18] Chigo Anota E., Hernández Cocoletzi H., Salazar Villanueva M., García Toral D., First-principles investigation of the interaction between BN, SiC and ZnO Nanotubes —BaTiO3, Superlatt. Microstruct. 2013, 63, 298-305 Google Scholar

  • [19] Chigo Anota E., Hernández Cocoletzi G., Sánchez Ramírez J. F., Armchair BN Nanotubes — Levothyroxine interactions: A Molecular Study, J. Mol. Model. 2013, 19, 4991-4996 Web of ScienceCrossrefGoogle Scholar

  • [20] Baumeier B., Krüger P., Pollmann J., Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes, Phys. Rev. B 2007, 76, 085407(1)-(10) Web of ScienceGoogle Scholar

  • [21] Boese A. D., Handy N. C., A new parametrization of exchange– correlation generalized gradient approximation functionals, J. Chem. Phys. 2001, 114, 5497-5503 Google Scholar

  • [22] Delley B., An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules, J. Chem. Phys. 1990, 92, 508-517 Google Scholar

  • [23] Delley B., From molecules to solids with the DMol3 approach, J. Chem. Phys. 2000, 113, 7756-7764 Google Scholar

  • [24] Geerlings P., De Proft F., Langenaeker W., Conceptual Density Functional Theory, Chem. Rev. 2003, 103, 1793-1874 Google Scholar

  • [25] Chigo Anota E., Ramírez Gutiérrez R. E., Pérez Sanchéz F. L., Sanchéz Ramírez J. F., Structural Characteristics and Chemical Reactivity of Doped Graphene Nanosheets, Graphene 2013, 1 (1), 31-36 Google Scholar

  • [26] Foresman JB, Frisch Æ. Exploring Chemistry with Electronic Structure Methods, 2nd ed., Gaussian Inc., USA, 1996 Google Scholar

  • [27] Hao S., Zhou G., Duan W., Wu J., Gu B. L., Tremendous spinsplitting effects in open boron nitride nanotubes: application to nanoscale spintronic devices, J. Am. Chem. Soc. 2006, 128, 8453(1)-(8) Google Scholar

  • [28] Xiang H. J., Yang J., Hou J. G., Zhu Q., First-principles study of small-radius single-walled BN nanotubes, Phys. Rev. B 2003, 68, 035427(1)-(5) Google Scholar

  • [29] Gómez B., Martínez Magadán J. M., A theoretical study of dibenzothiophene absorbed on open-ended carbon nanotubes, J. Phys. Chem. B 2005, 109, 14868-14875 Google Scholar

  • [30] Li S. Semiconductor Physical Electronics, 2nd ed., Springer, USA, 2006 Google Scholar

  • [31] Matsunaga N., Molecular Conduction Characteristics from the Intrinsic Molecular Properties, J. Comp. Theor. Nanosci. 2006, 3, 1-7 Google Scholar

  • [32] Yeon Lee S., Density Functional Theory Calculation of Molecular Structure and Vibrational Spectra of Dibenzothiophene in the Ground and the Lowest Triplet State, J. Phys. Chem A 2001, 105, 8093-8097 Google Scholar

  • [33] Schaffrin R., Trotter J., Structure of dibenzothiophene, J. Chem. Soc. A 1970, 1561-1565 CrossrefGoogle Scholar

  • [34] Radosavljevi M., Appenzeller J., Derycke V., Martel R., Avouris Ph., Loiseau A., Cochon J. L., Pigache D., Electrical properties and transport in boron nitride nanotubes, Appl. Phys. Lett. 2003, 82, 4131-4133 Google Scholar

  • [35] Lauret J. S., Arenal R., Ducastelle F., Loiseau A., Cau M., Attal-Tretout B., Rosencher E., Goux-Capes L., Optical transitions in single-wall boron nitride nanotubes, Phys. Rev. Lett. 2005, 94, 37405(1)-(4) Google Scholar

  • [36] Cumings J., Zettl A., Field emission and current-voltage properties of boron nitride nanotubes, Solid State Commun. 2004, 129, 661-664 Google Scholar

  • [37] Ishigami M., Sau J. D., Aloni S., Cohen M. L, Zettl A., Observation of the Giant Stark Effect in Boron-Nitride Nanotubes, Phys. Rev. Lett. 2005, 94, 56804(1)-(4) Google Scholar

  • [38] Gaussian 09, Revision C.01, Frisch M. J., Trucks G. W, Schlegel H. B., Scuseria G. E., Robb M. A, Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery, Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K.,. Rendell A, Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V, Cioslowski J., Fox D. J., Gaussian, Inc., Wallingford CT, 2010 Google Scholar

  • [39] O’Boyle N. M., Tenderholt A. L., Langner K. M., cclib: A library for package-independent computational chemistry algorithms, J. Comp. Chem. 2008, 29, 839-845 Web of ScienceGoogle Scholar

About the article

Received: 2014-02-26

Accepted: 2014-10-05

Published Online: 2015-02-16

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0088.

Export Citation

© 2015 E. Chigo Anota et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

R. Vasumathi, K. C. Lalithambika, D. Balamurugan, A. Thayumanavan, P. Neelamegam, and S. Sriram
Journal of Computational Electronics, 2017
Zhuoyuan Zheng, McCord Cox, and Bin Li
Journal of Materials Science, 2017
Zun-Yi Deng and Jian-Min Zhang
Canadian Journal of Physics, 2016, Volume 94, Number 10, Page 1071
Zun-Yi Deng, Jian-Min Zhang, and Ke-Wei Xu
Applied Surface Science, 2015, Volume 347, Page 485

Comments (0)

Please log in or register to comment.
Log in