Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1 (Apr 2015)

Issues

Study of N-doped TiO2 thin films for photoelectrochemical hydrogen generation from water

Kamila Kollbek
  • Corresponding author
  • AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcin Sikora
  • AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Czeslaw Kapusta
  • Corresponding author
  • AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anita Trenczek-Zajac
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta Radecka
  • Corresponding author
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarzyna Zakrzewska
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-08 | DOI: https://doi.org/10.1515/chem-2015-0089

Abstract

The present work deals with nitrogen-doped stoichiometric TiO2:N and non-stoichiometric TiO2−x:N thin films deposited by means of dc-pulsed reactive sputtering for application as photoanodes for hydrogen generation from water, using solar energy. Stoichiometric thin films of TiO2 crystallize as a mixture of anatase and rutile while rutile phase predominates in TiO2:N at higher nitrogen flow rates as shown by X-ray diffraction at grazing incidence, XRD GID. Lack of bulk nitridation of stoichiometric TiO2:N is indicated by valence-to-core X-ray emission spectroscopy, XES, analysis. The energy band gap as well as flat band potential remain almost unaffected by increasing nitrogen flow rate in this case. In contrast to that, non-stoichiometric thin films of TiO2‑x:N demonstrate systematic evolution of the structural, morphological, optical and photolectrochemical properties upon increasing level of nitrogen doping. Pronounced changes in the growth pattern of non-stoichiometric TiO2-x:N upon varied nitrogen flow rate, demonstrated by scanning electron microscopy, SEM, can be easily correlated with the crystallographic properties studied by XRD GID. Relative positions of Kβ’’ XES lines of the TiO2-x:N thin films, which depend strongly on the nature of the ligands and their local coordination, change with the increasing nitrogen flow. Doping of nonstoichiometric titanium dioxide with nitrogen shifts the absorption spectrum towards the visible range and increases considerably the flat band potential which is beneficial for water photolysis.

Graphical Abstract

Keywords : nitrogen doped TiO2; thin films; optical properties; flat band potential; XES

References

  • [1] Van de Krol R., Grätzel M. (eds.), Photoelectrochemical Hydrogen Production, Electronic Materials: Science & Technology 102, Springer Science+Business Media, 2012. Google Scholar

  • [2] Huang C.W., Liao C.H., Wu J.C.S., Liu Y.C, Chang C.L., Wu C.H., et al., Hydrogen generation from photocatalytic water splitting over TiO2 thin film prepared by electron beam-induced deposition, Int. J. Hydrogen Energ., 2010, 35, 12005-12010. Google Scholar

  • [3] Radecka M., Rekas M., Trenczek-Zajac A., Zakrzewska K., Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis, J. Power Sources, 2008, 181, 46-55. Google Scholar

  • [4] Fujishima A., Honda K., Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238, 37-38. Google Scholar

  • [5] Zakrzewska K., Brudnik A., Radecka M., Posadowski W., Reactively sputtered TiO2-x thin films with plasma-emissioncontrolled departure from stoichiometry, Thin Solid Films, 1999, 343, 152-155. Google Scholar

  • [6] Radecka M., Trenczek-Zajac A., Zakrzewska K., Rekas M., Effect of oxygen nonstoichiometry on photo-electrochemical properties of TiO2−x, J. Power Sources, 2007, 173, 816-821. Google Scholar

  • [7] Vratny F., Micale F., Reflectance spectra of non-stoichiometric titanium oxide, niobium oxide, and vanadium oxide, Trans. Faraday Soc., 1963, 59, 2739-2749. Google Scholar

  • [8] Brudnik A., Gorzkowska-Sobaś A., Pamuła E., Radecka M., Zakrzewska K., Thin film TiO2 photoanodes for water photolysis prepared by dc magnetron sputtering, J. Power Sources, 2007, 173, 774-780. Google Scholar

  • [9] Radecka M., Rekas M., Kusior E., Zakrzewska K., Heel A., Michalow K.A., et al., TiO2-based nanopowders and thin films for photocatalytical applications, J. Nanosci. Nanotechnol., 2010, 10, 1032-1042. Google Scholar

  • [10] Radecka M., Wierzbicka M., Komornicki S., Rekas M., Influence of Cr on photoelectrochemical properties of TiO2 thin films, Physica B, 2004, 348, 160-168. Google Scholar

  • [11] Trenczek-Zajac A., Radecka M., Jasinski M., Michalow K.A., Rekas M., Kusior E., et al., Influence of Cr on structural and optical properties of TiO2:Cr nanopowders prepared by flame spray synthesis, J. Power Sources, 2009, 194, 104-111. Google Scholar

  • [12] Radecka M., Zakrzewska K., Wierzbicka M., Gorzkowska A., Komornicki S., Study of the TiO2-Cr2O3 system for photoelectrolytic decomposition of water, Solid State Ionics, 2003, 157, 379-386. Google Scholar

  • [13] Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 2001, 293, 269-271. Google Scholar

  • [14] Di Valentin C., Pacchioni G.F., Selloni A., Origin of the different photoactivity of N-doped anatase and rutile TiO2, Phys. Rev. B, 2004, 70, 85116 . Google Scholar

  • [15] Lee S.H., Yamasue E., Okumura H., Ishihara K.N, Effect of oxygen and nitrogen concentration of nitrogen doped TiOx film as photocatalyst prepared by reactive sputtering, Appl. Catal. A-Gen., 2009, 371, 179-190. Web of ScienceGoogle Scholar

  • [16] Radecka M., Pamula E., Trenczek-Zajac A., Zakrzewska K., Brudnik A., Kusior E., et al., Chemical composition, crystallographic structure and impedance spectroscopy of titanium oxynitride TiNxOy thin films, Solid State Ionics, 2011, 192, 693-698. Google Scholar

  • [17] Trenczek-Zajac A., Pamula E., Radecka M., Kowalski K., Reszka A., Brudnik A., et al., Thin films of TiO2:N for photoelectrochemical applications, J. Nanosci. Nanotechnol., 2012, 12, 4703-4709. Google Scholar

  • [18] Henderson M.A., A surface science perspective on TiO2 photocatalysis, Surf. Sci. Rep., 2011, 66, 185-297. Google Scholar

  • [19] Wong M.S., Chou H.P., Yang T.S., Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst, Thin Solid Films, 2006, 494, 244-249. Google Scholar

  • [20] Dong F., Guo S., Li H., Wang X., Wu Z., Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach, J. Phys. Chem. C, 2011, 115, 13285-13292. Google Scholar

  • [21] Chaudhuri R.G., Paria S., Visible light induced photocatalytic activity of sulfur doped hollow TiO2 nanoparticles, synthesized via a novel route, Dalton T., 2014, 43, 5526-5534. Google Scholar

  • [22] Kollbek K., Sikora M., Kapusta Cz., Szlachetko J., Brudnik A., Kusior E. et al., X-ray absorption and emission spectroscopy of TiO2 thin films with modified anionic sublattice, Radiat. Phys. Chem., 2013, 93, 40-46. Google Scholar

  • [23] Szlachetko J., Sa J., Rational design of oxynitride materials: From theory to experiment, Cryst. Eng. Comm., 2013, 15, 2583-2587. Google Scholar

  • [24] Fakhouri H., Pulpytel J., Smith W., Zolfaghari A., Mortaheb H.R., Meshkini F., et al., Control of the visible and UV light water splitting and photocatalysis of nitrogen doped TiO2 thin films deposited by reactive magnetron sputtering, Appl. Catal. B-Environ., 2014, 144, 12-21. Google Scholar

  • [25] Zhu L., Xie J., Cui X., Shen J., Yang X., Zhang Z., Photoelectrochemical and optical properties of N-doped TiO2 thin films prepared by oxidation of sputtered TiNx films, Vacuum, 2010, 84, 797-802. Google Scholar

  • [26] Babu V.J., Kumar M.K., Nair A.S., Kheng T.L., Allakhverdiev S.I., Ramakrishna S., Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures, Int. J. Hydrogen Energ., 2012, 37, 8897-8904. Google Scholar

  • [27] Wang C., Hu Q., Huang J., Wu L., Deng Z., Liu Z., et al., Efficient hydrogen production by photocatalytic water splitting using N-doped TiO2 film, Appl. Surf. Sci., 2013, 283, 188-192. Google Scholar

  • [28] R. Brahimi, Y. Bessekhouad, M. Trari, Physical properties of NxTiO2 prepared by sol–gel route, Physica B, 2012, 407, 3897- 3904. Google Scholar

  • [29] Chen X., Burda X., Guo J., Smith K.E., Glans P.A., Learmonth T., X-ray absorption and emission study of nitrogen-doped titania nanoparticles, Arabian J. Sci. Eng., 2010, 35, 65-71. Google Scholar

  • [30] Braun A., Akurati K.K., Fortunato G., Reifler F.A., Ritter A., Harvey A.S., et al., Nitrogen doping of TiO2 photocatalyst forms a second eg state in the oxygen 1s NEXAFS pre-edge, J. Phys. Chem. C, 2010, 114, 516-519. Google Scholar

  • [31] Radecka M., Zakrzewska K., Czternastek H., Stapinski T., Debrus S., The influence of thermal annealing on the structural, electrical and optical properties of TiO2-x thin films, Appl. Surf. Sci., 1993, 65, 227-234. Google Scholar

  • [32] Szlachetko J., Nachtegaal M., De Boni E., Willimann M., Safonova O., Sa J., et al., A von Hamos X-ray spectrometer based on a segmented-type diffraction crystal for single-shot X-ray emission spectroscopy and time-resolved resonant inelastic X-ray scattering studies, Rev. Sci. Instrum., 2012, 83, 103105. Google Scholar

  • [33] Kollbek K., Sikora M., Kapusta Cz., Szlachetko J., Zakrzewska K., Kowalski K., et al., X-ray spectroscopic methods in the studies of nonstoichiometric TiO2−x thin films, Appl. Surf. Sci., 2013, 281, 100-104. Google Scholar

  • [34] Thornton, J. A., Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, J. Vac. Sci. Technol., 1974, 11, 666. Google Scholar

  • [35] Glatzel P., Bergmann U., High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes—electronic and structural information, Coordin. Chem. Rev., 2005, 249, 65-95. Google Scholar

  • [36] Glatzel P., Weng T.C., Kvashina K., Swarbrick J., Sikora M., Gallo E., et al., Reflections on hard X-ray photon-in/photonout spectroscopy for electronic structure studies, J. Electron Spectrosc. Relat. Phenom., 2013, 188, 17-25. Google Scholar

  • [37] Eeckhout S.G., Sofanova O.V., Smolentsev G., Biasioli M., Safonov V.A., Vykhodtseva L.N., et al., Cr local environment by valence-to-core X-ray emission spectroscopy, J. Anal. At. Spectrom., 2009, 24, 215-223. Web of ScienceGoogle Scholar

  • [38] Irie H., Watanabe Y., Hashimoto K., Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders, J. Phys. Chem. B, 2003, 107, 5483-5486. Google Scholar

  • [39] Di Valentin C., Finazzi E., Pacchioni G., Selloni A., Livraghi S., Paganini M.C., et al., N-doped TiO2: Theory and experiment, Chem. Phys., 2007, 339, 44-56. Google Scholar

  • [40] Di Valentin C., Pacchioni G., Selloni A., Electronic structure of defect states in hydroxylated and reduced rutile TiO2(110) surfaces, Phys. Rev. Lett., 2006, 97, 166803. Google Scholar

  • [41] Nakano Y., Morikawa T., Ohwaki T., Taga Y., Deep-level optical spectroscopy investigation of N-doped TiO2 films, Appl. Phys. Lett., 2005, 86, 132104. Google Scholar

  • [42] Chan M.H., Lu F.H., Characterization of N-doped TiO2 films prepared by reactive sputtering using air/Ar mixtures, Thin Solid Films, 2009, 518, 1369-1372. Google Scholar

  • [43] DeLoach J.D., Scarel G., Aita C.R., Correlation between titania film structure and near ultraviolet optical absorption, J. Appl. Phys., 1999, 85, 2377-2384. Google Scholar

  • [44] Khoshman J.M., Kordesch M.E., Optical absorption in amorphous InN thin films, J. Non-Cryst. Solids, 2006, 352, 5572-5577. Google Scholar

  • [45] Frova A., Boddy P.J., Chen Y.S., Electromodulation of the optical constants of rutile in the UV, Phys. Rev., 1967, 157, 700-708. Google Scholar

  • [46] Tang H., Prasad K., Sanjinès R., Schmid P.E., Lévy F., Electrical and optical properties of TiO2 anatase thin films, J. Appl. Phys., 1994, 75, 2042. Google Scholar

  • [47] Deb S.K., Photoconductivity and photoluminescence in amorphous titanium dioxide, Solid State Commun., 1972, 11, 713-715. Google Scholar

About the article

Received: 2013-11-06

Accepted: 2014-11-04

Published Online: 2015-04-08


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0089.

Export Citation

© 2015 Kamila Kollbek et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Anita Trenczek-Zajac and Joanna Banas
Functional Materials Letters, 2016, Volume 09, Number 04, Page 1641004
[2]
K. Kollbek, A. Szkudlarek, M.M. Marzec, B. Lyson-Sypien, M. Cecot, A. Bernasik, M. Radecka, and K. Zakrzewska
Applied Surface Science, 2016, Volume 380, Page 73

Comments (0)

Please log in or register to comment.
Log in