Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Salix viminaliswood as a new precursor for manufacturing of carbon molecular sieves for effective methane/nitrogen separation

Olga Gorska
  • Corresponding author
  • Faculty of Chemistry, Nicholas Copernicus University, ul. Gagarina 11, 87-100 Torun, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksandra W. Cyganiuk / Andrzej Olejniczak
  • Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, 141980, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Ilnicka / Jerzy P. Lukaszewicz
Published Online: 2015-04-01 | DOI: https://doi.org/10.1515/chem-2015-0091


Separation of a methane/nitrogen gas mixture was investigated by means of carbon molecular sieves (CMS) obtained from a newly discovered “green” resource: Salix viminalis. This plant grows quickly, yields hard wood and is frequently cultivated for energy purposes (renewable green fuel). Unconventional applications such as charcoal fabrication using this sort of wood are very rare. Carbonization of the wood (1–3 h, 600–700°C) yields carbons with a very narrow pore size distribution (determined by N2 adsorption at -196°C) resembling a perfect CMS. The diameter of most pores (ca. 0.8 nm) is comparable to the size of simple molecules, thus enabling separation. The sieving effect was proven in an industrially important process of CH4/N2 separation at 30–70°C. Despite relatively minor differences of the size of the molecules, the experiment demonstrated that separation factors are placed in the range 3.64–10.20. Additional experiments involving krypton proved that the separation mechanism is based on a geometric factor i.e. the known size and shape of the molecules under separation.

Graphical Abstract

Keywords : carbon molecular sieve; methane/nitrogen separation; Salix viminalis; carbonization


  • [1] Dillon A.C., Heben M.J., Hydrogen storage using carbon adsorbents: past, present and future, Appl. Phys. A: Mater. Sci & Process., 2001, 72, 133–142 CrossrefGoogle Scholar

  • [2] Hassan M.M., Ruthven D.M., Raghavan N.S., Air separation by pressure swing adsorption on a carbon molecular sieve, Chem. Eng. Sci., 1986, 41, 1333–1343 CrossrefGoogle Scholar

  • [3] Rege S.U., Yang R.T., Kinetic separation of oxygen and argon using molecular sieve carbon, Adsorption, 2000, 6, 15-22 Google Scholar

  • [4] Srinivasan R., Auvil S.R., Schork J.K., Mass transfer in carbon molecular sieves – an interpretation of Langmuir kinetics, The Chem. Eng. J., 1995, 57, 137–144 Google Scholar

  • [5] Sing K.S.W., Williams R.T., The use of molecular probes for the characterization of nanoporous adsorbents, Particle and Particle Sys. Character., 2004, 21, 71–79 CrossrefGoogle Scholar

  • [6] Reid C.R., O’koye I.P., Thomas K.M., Spherical adsorptives as probes for kinetic selectivity, Langmuir, 1998, 14, 2415–2425 CrossrefGoogle Scholar

  • [7] Reid C.R., Thomas K.M., Adsorption of gases on a carbon molecular sieve used for Air Separation: Linear Adsorptives as probes for kinetic selectivity, Langmuir, 1999, 15, 3206–3218 CrossrefGoogle Scholar

  • [8] Yoshioka T., Kanezashi M., Tsuru T., Micropore size estimation on gas separation membranes: A study in experimental and molecular dynamics, AICHE J., 2013, 59, 2179-2194 Web of ScienceGoogle Scholar

  • [9] Abedini R., Nezhadmoghadam A., Application of membrane in gas separation process. Its suitability and mechanism, Petroleum & Coal, 2010, 52, 69-80 Google Scholar

  • [10] Step G.Kh., Petrovichev M.V., Pressure swing adsorption for air separation and purification, Chem. Petrol. Eng., 2002, 38, 154–158 CrossrefGoogle Scholar

  • [11] Manzoor Z., Air separation on carbon molecular sieves: 4A and 5A zeolites by pressure swing adsorption, PhD thesis, University of Petroleum and Minerals, Dhahran, Saudi Arabia, 1971 Google Scholar

  • [12] Ackley M.W., Rege S.U., Saxena H., Application of natural zeolites in the purification and separation of gases, Micropor. Mesopor. Mater., 2003, 61, 25–42 CrossrefGoogle Scholar

  • [13] Shirley A.I., Lemcoff N.O., Air separation by carbon molecular sieves, Adsorption, 2001, 8, 147–155 Google Scholar

  • [14] Wang Q., Challa S.R., Sholl D.S., Johnson J.K., Quantum sieving in carbon nanotubes and zeolites, Phys. Rev. Lett., 1999, 82, 956–960 CrossrefGoogle Scholar

  • [15] Manocha S.M., Porous carbons, Sadhana, 2003, 28, 335–348 Google Scholar

  • [16] Hu Z., Vansan E.F., Carbon molecular sieves produced from walnut shell, Carbon, 1995, 33, 561–567 CrossrefGoogle Scholar

  • [17] Cyganiuk A., Klimkiewicz R., Olejniczak A., Lukaszewicz J.P., Biotechnological fabrication of LaMnO3-carbon catalyst for n-butanol conversion to ketones, Carbon, 2010, 48, 99–106 CrossrefGoogle Scholar

  • [18] Pastor-Villegas J., Pastor-Valle J.F., Meneses Rodriguez J.M., Garcia M., Study of commercial wood charcoals for the preparation of carbon adsorbents, J. Anal. Appl. Pyrolys., 2006, 76, 103–108 CrossrefGoogle Scholar

  • [19] Gorska O., Wybrane surowce naturalne jako potencjalne źródło do otrzymywania materiałów węglowych o właściwościach sitowo-molekularnych, MSc thesis, Nicholas Copernicus University, Torun, Poland, 2009, (in Polish) Google Scholar

  • [20] Lukaszewicz J.P., Wesołowski R., Arcimowicz A.. Sposób wytwarzania adsorbentów węglowych, Patent application, P 384122, Poland, 2007 Google Scholar

  • [21] Christersson L., Sennerby-Forsse L., The Swedish programme for intensive short rotation forests, Biomass. Bioenergy, 1994, 6, 145–149 CrossrefGoogle Scholar

  • [22] Labrecque M., Teodorescu T.I., Daigle S., Biomass productivity and wood energy of Salix species after 2 years growth in SRIC fertilized with wastewater sludge, Biomass. Bioenergy, 1997, 12, 409–417 CrossrefGoogle Scholar

  • [23] Łukaszewicz J.P., Wesołowski R., Fabrication of molecular-sievetype carbons from Salix viminalis, Micropor. Mesopor. Mater., 2008, 111, 723–726 CrossrefGoogle Scholar

  • [24] Standard DIN 66134, Bestimmung der Porengrößenverteilung und der spezifischen Oberfläche mesoporöser Feststoffe durch Stickstoffsorption: Verfahren nach Barrett, Joyner und Halenda (BJH), DIN Deutsches Institut fuer Normung, Berlin, Germany, 1998 Google Scholar

  • [25] Standard ISO 9277, Determination of the specific surface area of solids by gas adsorption using the BET method, International Organization for Standardization, Geneva, Switzerland, 1995 Google Scholar

  • [26] Horvath G., Kawazoe K.J., Method for the calculation of effective pore size distribution molecular sieve carbon, J. Chem. Eng. Japan, 1983, 16, 470–475 CrossrefGoogle Scholar

  • [27] Nimmo J.R., Porosity and pore size distribution, In: Hillel D. (Ed.), Encyclopedia of soils in the environment, Elsevier, London, 2004 Google Scholar

  • [28] Furmaniak S., Terzyk A.P., Gauden P.A., Harris P.J.F., Kowalczyk P., Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N2 and CO2 adsorption isotherms? Simulation results for realistic carbon model, J. Phys.: Condens. Matter, 2009, 21, 315005–315015 Web of ScienceCrossrefGoogle Scholar

  • [29] Lozano-Castello D., Cazorla-Amoros D., Linares-Solano A., Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons, Carbon, 2004, 42, 1231–1236 Google Scholar

  • [30] Albornoz A., Labady M., Lopez M., Laine J., Evidence for the formation of slit mesopores in activated carbon, J. Mater. Sci. Lett., 1999, 18, 1999–2000 CrossrefGoogle Scholar

  • [31] Rao M.B., Jenkins R.G., Steele W.A., Potential functions for diffusive motion in carbon molecular sieves, Langmuir, 1985, 1, 137-141 CrossrefGoogle Scholar

  • [32] Cavenati S., Grande C.A., Rodrigues A.E., Separation of methane and nitrogen by adsorption on carbon molecular sieve, Sep. Sci. Technol., 2005, 40, 2721–2743 CrossrefGoogle Scholar

  • [33] Farooq S., Qinglin H., Karimi I.A., Identification of transport mechanism in adsorbent micropores from column dynamics, Ind. Eng. Chem. Res., 2002, 41, 1098–1106 CrossrefGoogle Scholar

  • [34] Loughlin K.F., Hassan M.M., Fatehi A.I., Zahur M., Rate and equilibrium sorption parameters for nitrogen and methane on carbon molecular sieve, Gas Sep. Purif., 1993, 7, 264–273 CrossrefGoogle Scholar

  • [35] Everett D.H., Thermodynamics of adsorption. Part I.—General considerations, Trans. Faraday. Soc., 1950, 46, 453–459 CrossrefGoogle Scholar

About the article

Received: 2014-04-29

Accepted: 2014-11-07

Published Online: 2015-04-01

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0091.

Export Citation

© 2015 Olga Gorska et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in