Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Synthesis Optimization and Characterization of Microencapsulated N-P-K Slow-Release Fertilizers

Constantin Neamţu
  • Corresponding author
  • National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, Bucharest, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mariana Popescu
  • National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, Bucharest, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Florin Oancea
  • National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, Bucharest, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ştefan-Ovidiu Dima
  • National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, Bucharest, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-02 | DOI: https://doi.org/10.1515/chem-2015-0098


Slow-release microencapsulated N, P, and K fertilizer synthesis was optimized and the products exhaustively characterized. Four NPK formulations with nutrient mass ratios of 1:0:0, 1:1:0, 1:1:1, and 2:1:1 were characterized following European Council Regulation 2003/2003 for fertilizers as well as ICP-AES, 1H-NMR, FT-IR, HPLC, elemental analysis, XPS, SEM, dynamic light scattering, thermogravimetry, differential thermogravimetry, activity index, and leaching rate. These fertilizers have good slow-release properties and decrease waste and crop contaminants, improving environmental protection. Compared to classic granulated fertilizers, plant nutrient availability was improved allowing reduced application. Nutrient leaching parameters describing four different kinetic models were evaluated.

Graphical Abstract

Keywords : slow release; fertilizer; urea-formaldehyde; environment protection


  • [1] Phelan P., Moloney A. P., McGeough E. J., Humphreys J., Bertilsson J., O’Riordan E. G., P. O’Kiely, Forage legumes for grazing and conserving in ruminant production systems, Critical Reviews in Plant Sciences, 2015, 34, 281-326. Google Scholar

  • [2] Garde-Cerdan T., Santamaría P., Rubio-Breton P., Gonzalez- Arenzana L., Lopez-Alfaro I., Lopez R., Foliar application of proline, phenylalanine, and urea to Tempranillo vines: Effect on grape volatile composition and comparison with the use of commercial nitrogen fertilizers, LWT - Food Sci. Technol., 2015, 60, 684-689. Web of ScienceGoogle Scholar

  • [3] Fernández-Escobar R., Antonaya-Baena M.F., Sánchez-Zamora M.A., Molina-Soria C., The amount of nitrogen applied and nutritional status of olive plants affect nitrogen uptake efficiency, Scientia Hortic. (Amsterdam, Neth.), 2014, 167, 1-4. Google Scholar

  • [4] Ashworth A.J., Taylor A.M., Reed D.L., Allen F.L., Keyser P.D., Tyler D.D., Environmental impact assessment of regional switchgrass feedstock production comparing nitrogen input scenarios and legume-intercropping systems, J. Clean. Prod., 2015, 87, 227-234. Web of ScienceGoogle Scholar

  • [5] on I., Bogdan D., Ion A.C., Improvement in the determination of traces of nitrate and nitrite in natural mineral waters by ion chromatography, U.P.B. Sci. Bull. Series B, 2014, 76, 113-122. Google Scholar

  • [6] Stuart D., Schewe R.L., McDermott M., Reducing nitrogen fertilizer application as a climate change mitigation strategy: Understanding farmer decision-making and potential barriers to change in the US, Land Use Policy, 2014, 36, 210-218. Google Scholar

  • [7] Finck A., Fertilizers and their efficient use, in IFA World Fertilizer Use Manual, D.J. Halliday, M.E. Trenkel (Eds.), International Fertilizer Industry Association, Paris, 1992. Google Scholar

  • [8] Awmack K., BC Min. of Agriculture, http://www.al.gov.bc.ca/forage/ publications/RoleNutrientPlantGrowth.pdf, 2014. Google Scholar

  • [9] Seth P.K., Chemical contaminants in water and associated health hazards, Water Health, Springer Science & Business Media – Editor, 2013, 375. Google Scholar

  • [10] Benedini M., Tsakiris G., Water Quality in the Context of Water Resources Management, Water Sci. Technol. Libr. 70, 69, 2013. CrossrefGoogle Scholar

  • [11] Szczepaniak K., Sarbu C., Astel A., Rainska E., Biziuk M., Culicov O., Frontasyeva M.V., Bode P., Assessment of the impact of a phosphatic fertilizer plant on the adjacent environment using fuzzy logic, Cent. Eur. J. Chem., 2006, 4, 29-55. Google Scholar

  • [12] Huang B. B., Yan D. H., Wang H., Cheng B. F., Cui X. H., Effects of water quality of the basin caused by nitrogen loss from soil in drought, Nat. Hazards, 2015, 75, 2357–2368. Web of ScienceGoogle Scholar

  • [13] Association of American Plant Food Control Officials (AAPFCO), Official Publication No. 48. Published by Association of American Plant Food Control Officials, Inc.; West Lafayette, Indiana, USA, 1995. Google Scholar

  • [14] Thompson H.E., Encapsulated slow release fertilizers, USA Patent 5, 089, 041, 1992. Google Scholar

  • [15] Cahill S., Osmond D., Israel D., Nitrogen release from coated urea fertilizers in different soils, Commun. Soil Sci. Plant Anal., 2010, 41, 1245-1256. CrossrefWeb of ScienceGoogle Scholar

  • [16] Chen C.F., Hu C.Y., Liou M.L., Wu C.C., Su Y.S., Liu C.J, Application of low-phosphorous fertilizers on tea plantations as a novel best management practice, Sustain., 2014, 6, 6985-6997. CrossrefGoogle Scholar

  • [17] Rashidzadeh A., Olad A., Salari D., Reyhanitabar A., On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-Poly (acrylic acid-co-acrylamide)/ Clinoptilolite and its application as slow release fertilizer, J. Polym. Res., 2014, 21, art. 344. CrossrefGoogle Scholar

  • [18] Rashidzadeh A., Olad A., Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite, Carbohyd. Polym., 2014, 114, 269-278. Web of ScienceGoogle Scholar

  • [19] Roshanravan B., Mahdavi F., Rashid S.A., From Sources to Solution, Springer Singapore Heidelberg New York Dordrecht London, 2014, 23-28. Google Scholar

  • [20] Melaj M.A., Daraio M.E, Preparation and characterization of potassium nitrate controlled-release fertilizers based on chitosan and xanthan layered tablets, J. Appl. Polym. Sci., 2013, 130, 2422- 2428. Web of ScienceGoogle Scholar

  • [21] Tomaszewska M., Jarosiewicz A., Use of Polysulfone in Controlled-Release NPK Fertilizer Formulations, J. Agric. Food Chem., 2002, 50, 4634-4639. Google Scholar

  • [22] Zhao G., Liu Y.Q., Tian Y., Sun Y., Cao Y., Preparation and properties of macromolecular slow-release fertilizer containing nitrogen, phosphorus and potassium, J. Polym. Res., 2010, 17, 119-125. CrossrefGoogle Scholar

  • [23] Jahns T., Kiely D.E., Abiotic hydrolysis of some poly-D-glucaramides and subsequent microbial utilization/degradation, J. Polym. Environ., 2006, 14, 165-169. CrossrefGoogle Scholar

  • [24] Qiu X.Y., Zhu D.C., Tao S.M., Chen C., Ren X.Q., Hu S.W., 1-naphthylacetic-acid-functionalized polyacrylate-coated urea with dual controlled-release properties, J. Appl. Polym. Sci., 2013, 129, 559-567. Web of ScienceGoogle Scholar

  • [25] Zhanga D., Zhouc G., Zhanga X., Wanga Y., Li G., Structure and mass transportation model of slow-release organic carbon-source material for groundwater in situ denitrification, Environ. Technol., 2015, 36, 395-403. Web of ScienceCrossrefGoogle Scholar

  • [26] Beestman G.B., High concentration encapsulation by interfacial polycondensation, USA Patent 4,640,709, 1987. Google Scholar

  • [27] Rafiemanzelat F., Zonouz A.F., Emtiazi G., Synthesis of new poly(ether-urethane-urea)s based on amino acid cyclopeptide and PEG: study of their environmental degradation, Amino Acids, 2013, 44, 449-459. Google Scholar

  • [28] Carson L.C., Ozores-Hampton M., Morgan K.T., Sargent S.A., Prediction of controlled-release fertilizer nitrogen release using the pouch field and accelerated temperature-controlled incubation methods in sand soils, Hort. Sci., 2014, 49, 1575-1581 Google Scholar

  • [29] Babu R.P., O’Connor K., Seeram R., Current progress on bio-based polymers and their future trends, Prog. Biomater., 2013, 2, art. 8. CrossrefGoogle Scholar

  • [30] Isfan L., Tomas S., Pop C., Bosconea C., Mocanu-Ionescu R., Synthesis and characterisation of a series of tetrahydrazonophtalocyanine derivatives by condensation with various aromatic aldehydes, Rev. Chim. (Buchar. Rom), 2007, 58, 941-944. Google Scholar

  • [31] Gungor O., Yilmaz A., Memon S., Yilmaz M., Evaluation of the performance of calixGoogle Scholar

  • [8]arene derivatives as liquid phase extraction material for the removal of azo dyes, J. Hazard. Mater., 2008, 158, 202-207. Web of ScienceGoogle Scholar

  • [32] Tolescu C., Neamtu C., Ghiurea M., Iovu H., Preparation and characterization of encapsulated fertilizer, Environ. Eng. Manage. J., 2010, 4, 553-558. Google Scholar

  • [33] Wertz S.L., Gabrielson K., Wright J., Slow release nitrogen fertilizer, USA Patent 6,936,681 (2005) Google Scholar

  • [34] Smets J., Fernandez P.S., Yan N., Encapsulates, Patent no. EP2576751 A1 / CN102906238A / US20110294715 / WO2011150138A1, The Procter and Gamble Company, 2013. Google Scholar

  • [35] Trenkel M. E., Slow and controlled-release and stabilized fertilizers in agriculture, International Fertilizers Industry Association, Paris, France, 2010. Google Scholar

  • [36] Lubkowski K., Grzmil B., Controlled release fertilizers, Pol. J. Chem. Technol., 2007, 9, 83-84. CrossrefGoogle Scholar

  • [37] Shoji S., Gandeza A.T., Controlled release fertilizers with polyolefin resin coating, Konno Printing Co. Ltd., Sendai, Japan, 1992. Google Scholar

  • [38] Hu Y., Schraml M., von Tucher S., Li F., Schmidhalter U., Influence of nitrification inhibitors on yields of arable crops: A meta-study of recent research in Germany, Int. J. Plant Prod., 2014, 8, 33-50. Google Scholar

  • [39] Tolescu C., Neamtu C., Raceanu G., Popescu M., Iovu H., Polymeric microstructures for slow release of fertilizers, Mater. Plast. (Buchar. Rom.), 2009, 46, 387-393. Google Scholar

  • [40] European Council Regulation (EA) No 2003/2003 of The European Parliament and of The Council of 13 October 2003 relating to fertilizers, Official Journal 21.11.2003, L 304/1. (2003) Google Scholar

  • [41] Noppakundilograt S., Pheatcharat N., Kiatkamjornwong S., Multilayer-coated NPK compound fertilizer hydrogel with controlled nutrient release and water absorbency, J. Appl. Polym. Sci., 2015, 132, DOI: 10.1002/APP.41249. Web of ScienceCrossrefGoogle Scholar

  • [42] Schneider A., Tesileanu R., Charles R., Sinaj S., Kinetics of soil potassium sorption-desorption and fixation, Comm. Soil Sci. Plant Anal., 2013, 44, 837–849. Google Scholar

  • [43] Cai Z., Wang B., Xu M., Zhang H., Zhang L., Gao S., Nitrification and acidification from urea application in red soil (Ferralic Cambisol) after different long-term fertilization treatments, J. Soil. Sedim., 2014, 14, 1526-1536. CrossrefGoogle Scholar

About the article

Received: 2014-07-31

Accepted: 2015-02-04

Published Online: 2015-04-02

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0098.

Export Citation

© 2015 Constantin Neamţu et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in