Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry


IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

Volume 13 (2015)

Electrochemical Methods for Total Antioxidant Capacity and its Main Contributors Determination: A review

Aurelia Magdalena Pisoschi
  • Corresponding author
  • University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, sector 5, Bucharest, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carmen Cimpeanu
  • University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Land Reclamation and Environmental Engineering, 59 Marasti Blvd, 011464, sector 1, Bucharest, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gabriel Predoi
  • University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, 105 Splaiul Independentei, 050097, sector 5, Bucharest, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-07 | DOI: https://doi.org/10.1515/chem-2015-0099

Abstract

Backround: The present review focuses on electrochemical methods for antioxidant capacity and its main contributors assessment. The main reactive oxygen species, responsible for low density lipoprotein oxidation, and their reactivity are reminded. The role of antioxidants in counteracting the factors leading to oxidative stress-related degenerative diseases occurence, is then discussed. Antioxidants can scavenge free radicals, can chelate pro-oxidative metal ions, or quench singlet oxygen. When endogenous factors (uric acid, bilirubin, albumin, metallothioneins, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase) cannot accomplish their protective role against reactive oxygen species, the intervention of exogenous antioxidants (vitamin C, tocopherols, flavonoids, carotenoids etc) is required, as intake from food, as nutritional supplements or as pharmaceutical products.

Literature study: The main advantages of electrochemical methods with respect to traditional, more laborious instrumental techniques are described: sensitivity, rapidity, simplicity of the applied analytical procedure which does not require complicated sample pre-treatment etc.

The paper reviews minutiously the voltammetric, amperometric, biamperometric, potentiometric and coulometric methods for total antioxidant capacity estimation. For each method presented, the electroactivity and the mechanism of electro-oxidation of antioxidant molecules at various electrodes, as well as the influences on the electroactive properties are discussed. The characteristics of the developed methods are viewed from the perspective of the antioxidant molecule structure influence, as well as from the importance of electrode material and/or surface groups standpoint.

The antioxidant molecule-electrode surface interaction, the detection system chosen, the use of modifiers, as well as the nature of the analysed matrix are the factors discussed, which influence the performances of the studied electrochemical techniques.

Conclusions: The electrochemical methods reviewed in this paper allow the successful determination of the total antioxidant capacity and of its main contributors in various media: foodstuffs and beverages, biological fluids, pharmaceuticals. The advantages and disadvantages of the electrochemical methods applied to antioxidant content and antioxidant activity assay are treated and interpreted, in the case of various analysed matrixes. Combining advanced materials with classical electrode construction, provides viable results and can constitute an alternative for the future.

Graphical Abstract

Keywords : antioxidant activity; voltammetry; amperometry; potentiometry; foodstuffs; biological fluids

References

  • [1] Gülçin I., Antioxidant activity of food constituents: an overview, Arch. Toxicol., 2012, 86, 345–391. CrossrefGoogle Scholar

  • [2] Beretta G., Facino R.M., Recent advances in the assessment of the antioxidant capacity of pharmaceutical drugs: from in vitro to in vivo evidence, Anal. Bioanal. Chem., 2010, 398, 67–75. Google Scholar

  • [3] Jones D.P., Radical-free biology of oxidative stress, Am. J. Physiol. Cell-Physiol., 2008, 296, C849–C868. Google Scholar

  • [4] Davies K.J., Oxidative stress: the paradox of aerobic life, Biochem. Soc. Symp., 1995, 61, 1–31. CrossrefGoogle Scholar

  • [5] Gülçin I., Antioxidant and antiradical activities of L-Carnitine, Life Sci., 2006, 78, 803–811. CrossrefGoogle Scholar

  • [6] Elmastas M., Gülçin I., Beydemir S., Küfrevioğlu Ő.I., Aboul- Enein H.Y., A study on the in vitro antioxidant activity of juniper (Juniperus communis L.) seeds extracts, Anal. Lett., 2006, 39, 47–65. CrossrefGoogle Scholar

  • [7] Gülçin I., Antioxidant properties of resveratrol: a structure activity insigh, Innov. Food. Sci. Emerg., 2010, 11, 210–218. CrossrefGoogle Scholar

  • [8] Halliwell B., Gutteridge J.M.C., Free radicals in biology and medicine, Fourth Edition, Oxford University Press, Oxford, 2007. Google Scholar

  • [9] Ames B.N., Shigenaga M.K., Hagen T.M., Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. USA, 1993, 90, 7915–7922. CrossrefGoogle Scholar

  • [10] Pietta P.G., Flavonoids as antioxidants, J. Nat. Prod., 2000, 63, 1035–1042. CrossrefGoogle Scholar

  • [11] Korotkova E.I., Voronova O.A., Dorozhko E.V., Study of antioxidant properties of flavonoids by voltammetry, J. Solid State Electrochem., 2012, 16, 2435–2440. Google Scholar

  • [12] Forest S.E., Stimson M.J., Simon J.D., Mechanism for the photochemical production of superoxide by quinacrine, J. Phys. Chem. B, 1999, 103, 3963–3964. CrossrefGoogle Scholar

  • [13] Shahidi F., Janitha P.K., Wanasundara P.D., Phenolic antioxidants, Crit. Rev. Food Sci. Nutr., 1992, 32, 67–103. CrossrefGoogle Scholar

  • [14] Gülçin I., Elias R., Gepdiremen A., Boyer L., Antioxidant activity of lignans from fringe tree (Chionanthus virginicus L.), Eur. Food Res. Technol., 2006, 223, 759–767. Google Scholar

  • [15] Huang D., Ou B., Prior R.L., The chemistry behind antioxidant capacity assays, J. Agric. Food Chem., 2005, 53, 1841-1856. CrossrefGoogle Scholar

  • [16] Halliwell B., How to characterize a biological antioxidant, Free Radical Res. Commun., 1990, 9, 1-32. Google Scholar

  • [17] Rimm E.B., Ascherio A., Giovannucci E., Spiegalman D., Stampfer M., Willett W., Vegetable, fruits, and cereal fiber intake and risk of coronary heart disease among men, J.A.M.A., 1996, 275, 447–451. Google Scholar

  • [18] Rimm E.B., Katan M.B., Ascherio A., Stampfer M.J., Willett W., Relation between intake of flavonoids and risk for coronary heart disease in male health professionals, Ann. Intern. Med., 1996, 125, 384–389. CrossrefGoogle Scholar

  • [19] Eberhardt M.V., Lee C.Y., Liu R.H., Antioxidant activity of fresh apples, Nature, 2000, 405, 903–904. Google Scholar

  • [20] Ganesan K., Kumar K.S., Rao P.V.S., Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, northwest coast of India, Innov. Food. Sci. Emerg., 2011, 12, 73–78. CrossrefGoogle Scholar

  • [21] Bocco A., Cuvelier M.E., Richard, H., Berset C., Antioxidant activity and phenolic composition of citrus peel and seed extracts, J. Agric. Food. Chem., 1998, 46, 2123–2129. CrossrefGoogle Scholar

  • [22] Paganga G., Miller N., Rice-Evans C.A., The polyphenolic content of fruits and vegetables and their antioxidant activities. What does a serving constitute?, Free Radical. Res., 1999, 30, 153–162. Google Scholar

  • [23] Pisoschi A.M., Cheregi M.C., Danet A.F., Total antioxidant capacity of some commercial fruit juices: electrochemical and spectrophotometrical approaches, Molecules, 2009, 14, 480-493. CrossrefGoogle Scholar

  • [24] Lanina S.A., Toledo P., Sampels S., Kamal-Eldin A., Jastrebova J.A., Comparison of reversed-phase liquid chromatography mass spectrometry with electrospray and atmospheric pressure chemical ionization for analysis of dietary tocopherols, J. Chromatogr. A, 2007, 1157, 159-170. Google Scholar

  • [25] Barroso M.F., de-los-Santos-Álvarez N., Lobo-Castañón M.J., Miranda-Ordieres A.J., Delerue-Matos C., Oliveira M.B.P.P., Tuñón-Blanco P., DNA-based biosensor for the electrocatalytic determination of antioxidant capacity in beverages, Biosens. Bioelectron., 2011, 26, 2396–2401. CrossrefGoogle Scholar

  • [26] Vertuani S., Angusti A., Manfredini S., The antioxidants and proantioxidants network: an overview, Curr. Pharm. Des., 2004, 10, 1677–1694. CrossrefGoogle Scholar

  • [27] Dopico-Garcìa M.S., Lòpez-Vilarinõ J.M., González- Rodríguez M.V., Determination of antioxidant migration level from lowdensity polyethylene films into food simulants, J. Chromatogr. A, 2003, 1018, 53-62. Google Scholar

  • [28] Litescu S.C., Sandra A.V., Eremia S.A.V., Diaconu M., Tache A., Radu G.L., Biosensors applications on assessment of reactive oxygen species and antioxidants, chapter 5, in Environmental biosensors, Edited by Vernon Somerset, In Tech Rijeka Croatia, 2011. Google Scholar

  • [29] Lino F.M.A., de Sá L.Z., Torres I.M.S., Rocha M.L., Dinis T.C.P., Ghedini P.C., Somerset V.S., Gil E.S., Voltammetric and spectrometric determination of antioxidant capacity of selected wines, Electrochim. Acta, 2014, 128, 25-31. CrossrefGoogle Scholar

  • [30] Pellegrini N., Serafini S., Del Rio S.D., Bianchi M., Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays, Mol. Nutr. Food.Res., 2006, 50, 1030–1038. CrossrefGoogle Scholar

  • [31] Hu F.B., Plant-based foods and prevention of cardiovascular disease: an overview, Am. J. Clin. Nutr., 2003, 78, 544-551. Google Scholar

  • [32] McCullough M.L., Robertson A.S., Chao A., Jacobs E.J., Stampfer M.J., Jacobs D.R., Diver W.R., Cale E.E., Thun M.J., A prospective study of whole grains, fruits, vegetables and colon cancer risk, Cancer Cause Control., 2003, 14, 959-970. CrossrefGoogle Scholar

  • [33] Houston M., Nutrition and nutraceutical supplements for the treatment of hypertension: Part I: Review Paper., J. Clin. Hypertens., 2013, 15, 752-757. Google Scholar

  • [34] Mello L.D., Kubota L.T., Biosensors as a tool for the antioxidant status evaluation, Talanta, 2007, 72, 335–348. CrossrefGoogle Scholar

  • [35] MacDonald-Wicks L.K., Wood L.G., Garg M.L., Methodology for the determination of biological antioxidant capacity in vitro: a review, J. Sci. Food Agric., 2006, 86, 2046–2056. CrossrefGoogle Scholar

  • [36] Svork, L., Determination od caffeine: a comprehensive review on electrochemical methods, Int. J. Electrochem. Sci., 2013, 8, 5755-5773. Google Scholar

  • [37] Pisoschi A.M., Negulescu Gh.P., Pisoschi A., Ascorbic acid determination by an amperometric ascorbate oxidase-based biosensor, Rev. Chim. (Bucharest), 2010, 61, 339-344. Google Scholar

  • [38] Pisoschi A.M., Pop A., Negulescu Gh.P., Pisoschi A., Determination of ascorbic acid content of some fruit juices and wine by voltammetry performed at Pt and Carbon Paste Electrodes, Molecules, 2011, 16, 1349-1365. CrossrefGoogle Scholar

  • [39] de Lima A.A., Sussuchi E.M., de Giovani W.F., Electrochemical and antioxidant properties of anthocyanins and anthocyanidins, Croat. Chem. Acta, 2007, 80, 29-34. Google Scholar

  • [40] Pisoschi A.M., Danet A.F., Kalinowski S., Ascorbic acid determination in commercial fruit juice samples by cyclic voltammetry, J. Autom. Methods Manag. Chem., Volume 2008, Article ID 937651, 8 pages, doi:10.1155/2008/937651. CrossrefGoogle Scholar

  • [41] Arteaga J.F., Ruiz-Montoya M., Palma A., Alonso-Garrido G., Pintado S., Rodríguez-Mellado J.M., Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles, Molecules, 2012, 17, 5126-5138. CrossrefGoogle Scholar

  • [42] Kounaves S.P., Voltammetric techniques, Ch. 37, in F.A. Settle (Ed.) Handbook of instrumental techniques for analytical chemistry, Prentice Hall, Upper Saddle River, New Jersey, 1997. Google Scholar

  • [43] Behfar A.A., Sadeghi N., Jannat B., Oveisi M.R., Determination of L- ascorbic acid in plasma by voltammetric method, Iran. J. Pharm. Res., 2010, 9, 123-128. Google Scholar

  • [44] Wawrzyniak J., Ryniecki A., Zembrzuski W., Application of voltammetry to determine vitamin C in apple juices, Acta Sci. Pol. Technol. Aliment., 2005, 42, 5–16. Google Scholar

  • [45] Kilmartin P.A., Zou H.L., Waterhouse A.L., A cyclic voltammetry method suitable to characterizing antioxidant properties of wine and wine phenolics, J. Agric. Food Chem., 2001, 49, 1957–1965. CrossrefGoogle Scholar

  • [46] Bortolomeazzi R., Sebastianutto N., Toniolo R., Pizzariello A., Comparative evaluation of the antioxidant capacity of smoke flavouring phenols by crocin bleaching inhibition, DPPH radical scavenging and oxidation potential, Food Chem., 2007, 100, 1481–1489. CrossrefGoogle Scholar

  • [47] Samra M.A., Chedea V.S., Economou A., Calokerinos A., Kefalas P., Antioxidant/prooxidant properties of model phenolic compounds: part I. studies on equimolar mixtures by chemiluminescence and cyclic voltammetry, Food Chem., 2011, 125, 622–629. CrossrefGoogle Scholar

  • [48] Yakovleva K.E., Kurzeev S.A., Stepanova E.V., Fedorova T.V., Kuznetsov B.A., Koroleva O.V., Characterization of plant phenolic compounds by cyclic voltammetry, Appl. Biochem. Microbiol., 2007, 43, 661–668. CrossrefGoogle Scholar

  • [49] Chevion S., Roberts M.A., Chevion M., The use of cyclic voltammetry for the evaluation of antioxidant capacity, Free Rad. Biol. Med., 2000, 28, 860–870. Google Scholar

  • [50] Bott A.W., Practical problems in voltammetry 2. Electrode capacitance, Curr.Sep. 1993, 12, 10-13. Google Scholar

  • [51] Marken F., Neudeck A., Bond A.M., Cyclic voltammetry, Ch II.1. in F. Scholz (Edts), Electroanalytical methods-guide to experiments and applications, Springer, 2009, p.62. Google Scholar

  • [52] Kilmartin P.A., Zou H.L., Waterhouse A.L., Correlation of wine phenolic composition versus cyclic voltammetry response, Am. J. Enol. Viticult., 2002, 53, 294–302. Google Scholar

  • [53] Chevion S., Chevion M., Boon Chock P., Beecher G.R., Antioxidant capacity of edible plants: Extraction protocol and direct evaluation by cyclic voltammetry, J. Med. Food, 1999, 2, 1–10. CrossrefGoogle Scholar

  • [54] Campanella L., Martini E., Rita G., Tomassetti M., Antioxidant capacity of dry vegetal extracts checked by voltammetric method, J. Food Agric. Environ., 2006, 4, 135-144. Google Scholar

  • [55] Zielinska D., Szawara-Nowak D., Zielinski H., Comparison of spectrophotometric and electrochemical methods for the evaluation of the antioxidant capacity of buckwheat products after hydrothermal treatment, J. Agric. Food Chem., 2007, 55, 6124-6131. CrossrefGoogle Scholar

  • [56] Chevion S., Berry E.M., Kitrossky N., Kohen R., Evaluation of plasma low molecular weight antioxidant capacity by cyclic voltammetry, Proceedings of the International Meeting on Free Radicals in Health and Disease, Istanbul, 1995, abstract no. 300. Google Scholar

  • [57] Chevion S., Berry E.M., Kitrossky N., Kohen R., Evaluation of plasma low molecular weight antioxidant capacity by cyclic voltammetry, Free Radic. Biol. Med., 1997, 22, 411–421. Google Scholar

  • [58] Chevion S., Hofmann M., Ziegler R., Chevion M., Nawroth P.P., The antioxidant properties of thioctic acid: characterization by cyclic voltammetry, Biochem. Mol. Biol. Int., 1997, 41, 317–327. Google Scholar

  • [59] Chevion S., Chevion M., Antioxidant status and human health - use of cyclic voltammetry for the evaluation of the antioxidant capacity of plasma and of edible plants, Ann. N.Y. Acad. Sci., 2000, 899, 308-325. Google Scholar

  • [60] Chevion S., Or R., Berry E.M., The antioxidant status of patients subjected to total body irradiation, Biochem. Mol. Biol. Int., 1999, 47, 1019–1027. Google Scholar

  • [61] U.S. Department of Agriculture, Agricultural Research Service. 2013. USDA National Nutrient Database for Standard Reference, Release 26. Nutrient Data Laboratory Home Page, URL: http:// www.ars.usda.gov/ba/bhnrc/nd, accessed 15 oct. 2014. Google Scholar

  • [62] Ruffien-Ciszak A., Gros P., Comtat M., Schmitt A-M., Questel E., Casas C., Redoules D., Exploration of the global antioxidant capacity of the stratum corneum by cyclic voltammetry, J. Pharm. Biomed. Anal., 2006, 40, 162–167. CrossrefGoogle Scholar

  • [63] Ziyatdinova G.K., Budnikov Ć.H.C., Pogorel’tzev Ć.V.I., Electrochemical determination of the total antioxidant capacity of human plasma, Anal. Bioanal. Chem., 2005, 381, 1546–1551. Google Scholar

  • [64] Korotkova E.I., Karbainov Y.A., Shevchuk A.V., Study of antioxidant properties by voltammetry, J. Electroanal. Chem., 2002, 518, 56–60. Google Scholar

  • [65] Photinon K., Chalermchart Y., Khanongnuch C., Wang S-H., Liu Ch-Ch., A thick-film sensor as a novel device for determination of polyphenols and their antioxidant capacity in white wine, Sensors, 2010, 10, 1670-1678. CrossrefGoogle Scholar

  • [66] Roginsky V., de Beer D., Harbertson J.F., Kilmartin P.A., Barsukova T., Adams D.O., The antioxidant activity of Californian red wines does not correlate with wine age, J. Sci. Food Agric., 2006, 86, 834–840. CrossrefGoogle Scholar

  • [67] Makhotkina O., Kilmartin P.A., The use of cyclic voltammetry for wine analysis: determination of polyphenols and free sulfur dioxide, Anal. Chim. Acta, 2010, 668, 155–165. Google Scholar

  • [68] Makhotkina O., Kilmartin P.A., Uncovering the influence of antioxidants on polyphenol oxidation in wines using an electrochemical method: cyclic voltammetry, J. Electroanal. Chem., 2009, 633, 165–174. Google Scholar

  • [69] Sousa W.R., da Rocha C., Cardoso C.L., Silva D.H.S., Zanoni M.V.B., Determination of the relative contribution of phenolic antioxidants in orange juice by voltammetric methods, J. Food Compos. Anal., 2004, 17, 619–633. CrossrefGoogle Scholar

  • [70] Simic A., Manojlovic D., Segan D., Todorovic M., Electrochemical behavior and antioxidant and prooxidant activity of natural phenolics, Molecules, 2007, 12, 2327-2340. CrossrefGoogle Scholar

  • [71] Ahmed S., Tabassum S., Shakeel F., Khan A.Y., A facile electrochemical analysis to determine antioxidant activity of flavonoids against DPPH radical, J. Electrochem. Soc., 2012, 159, F103-F109. Google Scholar

  • [72] Masek A., Zaborski M., Chrzescijanska E., Electrooxidation of flavonoids at platinum electrode studied by cyclic voltammetry, Food Chem., 2011, 127, 699–704. CrossrefGoogle Scholar

  • [73] Piljac-Zegarac J., Valek L., Stipcevic T., Martinez S., Electrochemical determination of antioxidant capacity of fruit tea infusions, Food Chem., 2010, 121, 820–825. CrossrefGoogle Scholar

  • [74] Waterhouse D.S., Bronwen G.S., O’Connor C.J., Melton L.D., Effect of raw and cooked onion dietary fibre on the antioxidant activity of ascorbic acid and quercetin, Food Chem., 2008, 111, 580–585. CrossrefGoogle Scholar

  • [75] Masek A., Chrzescijanska E., Kosmalska A., Zaborski M., Antioxidant activity determination in Sencha and Gun powder green tea extracts with the application of voltammetry and UV-VIS spectrophotometry, C. R. Chim., 2012, 15, 424–427. Google Scholar

  • [76] Naumova G., Maksimova V., Mirceski V., Ruskovska T., Koleva G.L., Gulaboski R., Rapid estimation of antioxidant capacity of some medicinal plants: electrochemical and photometric approaches, in: 8th Conference on medicinal and aromatic plants of southeast european countries, 19-22 May 2014, Durres, Albania. URL: http://eprints.ugd.edu.mk/id/eprint/11079, accessed 07.11.2014 Google Scholar

  • [77] Zielinska D., Wiczowski W., Piskula M.K., Determination of the relative contribution of quercetin and its glucosides to the antioxidant capacity of onion by cyclic voltammetry and spectrophotometric methods, J. Agric. Food Chem., 2008, 56, 3524–3531. CrossrefGoogle Scholar

  • [78] Kondo T., Sakai K., Watanabe T., Einaga Y., Yuasa M., Electrochemical detection of lipophilic antioxidants with high sensitivity at boron-doped diamond electrode, Electrochim. Acta, 2013, 95, 205-211. CrossrefGoogle Scholar

  • [79] Tyurin V.Yu., Meleshonkova N.N., Dolganov A.V., Glukhova A.P., Milaeva E.R., Electrochemical method in determination of antioxidative activity using ferrocene derivatives as examples, Russ. Chem. Bul., 2011, 60, 647-655. CrossrefGoogle Scholar

  • [80] Ziyatdinova G.K., Nizamova A.M., Budnikov H.C., Voltammetric determination of curcumin in spices, J. Anal. Chem., 2012, 67, 591–594. CrossrefGoogle Scholar

  • [81] Apetrei C., Apetrei I.M., De Saja J.A., Rodriguez-Mendez M.L., Carbon paste electrodes made from different carbonaceous materials: Application in the study of antioxidants, Sensors, 2011, 11, 1328-1344. CrossrefGoogle Scholar

  • [82] de Beer D., Harbertson J.F., Kilmartin P.A., Roginsky V., Barsukova T., Adams D.O., Waterhouse A.L., Phenolics: a comparison of diverse analytical methods, Am. J. Enol. Vitic., 2004, 55, 389-399. Google Scholar

  • [83] Blasco A.J., Crevillen A.G., Gonzalez M.C., Escarpa A., Direct electrochemical sensing and detection of natural antioxidants and antioxidant capacity in vitro systems, Electroanalysis, 2007, 19, 2275–2286. CrossrefGoogle Scholar

  • [84] Makhotkina O., Kilmartin P.A., The phenolic composition of Sauvignon blanc juice profiled by cyclic voltammetry, Electrochim. Acta, 2012, 83, 188–195. CrossrefGoogle Scholar

  • [85] Sochor J., Dobes J., Krystofova O., Ruttkay-Nedecky B., Babula P., Pohanka M., Jurikova T., Zitka O., Adam V., Klejdus B., Kizek R., Electrochemistry as a tool for studying antioxidant properties, Int. J. Electrochem. Sci., 2013, 8, 8464–8489. Google Scholar

  • [86] Hynek D., Prasek J., Pikula J., Adam V., Hajkova P., Krejcova L., Trnkova L., Sochor J., Pohanka M., Hubalek J., Beklova M., Vrba R., Kizek R., Electrochemical analysis of lead toxicosis in vultures, Int. J. Electrochem. Sci., 2011, 6, 5980-6010. Google Scholar

  • [87] Sochor J., Hynek D., Krejcova L., Fabrik I., Krizkova S., Gumulec J., Adam V., Babula P., Trnkova L., Stiborova M., Hubalek J., Masarik M., Binkova H., Eckschlager T., Kizek R., Study of metallothionein role in spinocellular carcinoma tissues of head and neck tumours using Brdicka Reaction, Int. J. Electrochem. Sci., 2012, 7, 2136-2152. Google Scholar

  • [88] Aguirre M.J, Chen Yo.Y., Isaacs M., Matsuhiro B., Mendoza L., Torres S., Electrochemical behaviour and antioxidant capacity of anthocyanins from Chilean red wine, grape and raspberry, Food Chem., 2010, 121, 44–48. CrossrefGoogle Scholar

  • [89] Blasco A.J., Gonzalez M.C., Escarpa A., Electrochemical approach for discriminating and measuring predominant flavonoids and phenolic acids using differential pulse voltammetry: towards an electrochemical index of natural antioxidants, Anal. Chim. Acta, 2004, 511, 71-81. Google Scholar

  • [90] Diculescu V.C., Vivan M., Brett A.M.O., Voltammetric behavior of antileukemia drug glivek. Part III: In situ DNA oxidative damage by the glivek electrochemical metabolite, Electroanalysis, 2006, 18, 1963-1970. CrossrefGoogle Scholar

  • [91] Seruga M., Novak I., Jakobek L., Determination of polyphenols content and antioxidant activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric methods, Food Chem., 2011, 124, 1208–1216. CrossrefGoogle Scholar

  • [92] Janeiro P., Oliveira Brett A.M., Catechin electrochemical oxidation mechanisms, Anal. Chim. Acta, 2004, 518, 109–115. Google Scholar

  • [93] Souza L.P., Calegari F., Zarbin A.J.G., Marcolino-Júnior L.H., Bergamini M.F., Voltammetric determination of the antioxidant capacity in wine samples using a carbon nanotube modified electrode, J. Agric. Food Chem., 2011, 59, 7620−7625. CrossrefGoogle Scholar

  • [94] Shpigun L.K., Arharova M.A., Brainina K.Z., Ivanova A.V., Flow injection potentiometric determination of total antioxidant activity of plant extracts, Anal. Chim. Acta, 2006, 573-574, 419–426. Google Scholar

  • [95] Yilmaz U.T., Kekillioglu A., Mert R., Determination of gallic acid by differential pulse polarography: application to fruit juices, J. Anal. Chem., 2013, 68, 1064-1069. CrossrefGoogle Scholar

  • [96] Litescu S.C., Radu G.L., Estimation of the antioxidative properties of tocopherols – an electrochemical approach, Eur. Food Res. Technol., 2000, 211, 218-221. Google Scholar

  • [97] Shapoval G.S., Kruglyak O.S., Electrochemical modeling of antioxidants action and determination of their activity, Russ. J. Gen. Chem., 2011, 81, 1442–1448. CrossrefGoogle Scholar

  • [98] Zhang G., Yang F., Gao M., Fang X., Liu L., Electro- Fenton degradation of azo dye using polypyrrole/ anthraquinonedisulphonate composite film modified graphite cathode in acidic aqueous solutions, Electrochim. Acta, 2008, 53, 5155-5161. CrossrefGoogle Scholar

  • [99] Dubinina E.E., Anti-oxidant system of blood plasma, Ukr. Biokhim. Zh., 1992, 64, 3-15. Google Scholar

  • [100] May L.M., Qu Z., Morrow J.D., Mechanisms of ascorbic acid recycling in human erythrocytes, Biochim. Biophys. Acta, 2001, 1528, 159-166. Google Scholar

  • [101] Wincler B.S., Unequivocal evidence in support of the nonenzymatic redox coupling between glutathione/glutathione disulfide and ascorbic acid/dehydroascorbic acid, Biochim. Biophys. Acta, 1992, 1117, 287-290. Google Scholar

  • [102] de-los-Santos-Alvarez N., de-los-Santos-Alvarez P., Lobo- Castanon M.J., Lopez R., Miranda-Ordieres A.J., Tunon-Blanco P., Electrochemical oxidation of guanosine and adenosine: two convergent pathways, Electrochem. Commun., 2007, 9, 1862– 1866. Google Scholar

  • [103] Skeva, E., Girousi, S., A study of the antioxidative behavior of phenolic acids, in aqueous herb extract using a dsDNA biosensor, Cent. Eur. J. Chem., 2012, 10, 1280-1289. Google Scholar

  • [104] Laborda E., Molina A., Li Q., Batchelor-McAuley C., Compton R.G., Square wave voltammetry at disc microelectrodes for characterization of two electron redox processes, Phys. Chem. Chem. Phys., 2012, 14, 8319-8327. CrossrefGoogle Scholar

  • [105] Viswanathan V., Hansen H.A., Rossmeisl J., Jaramillo T.F., Pitsch H., Norskov J.K., Simulating linear sweep voltammetry from firstprinciples: application to electrochemical oxidation of water on Pt(111) and Pt3Ni(111), J. Phys. Chem. C, 2012, 116, 4698-4704. CrossrefGoogle Scholar

  • [106] O’Connor J.J., Lowry J.P., A comparison of the effects of the dopamine partial agonists aripiprazole and (−)-3-PPP with quinpirole on stimulated dopamine release in the rat striatum: studies using fast cyclic voltammetry in vitro, Eur. J. Pharmacol., 2012, 686, 60-65. Google Scholar

  • [107] Boudreau P.A., Perone S.P., Quantitative resolution of overlapped peaks in programmed potential-step voltammetry, Anal. Chem., 1979, 51, 811-817. CrossrefGoogle Scholar

  • [108] Dogan-Topal B., Ozkan S.A., Uslu B., The analytical applications of square wave voltammetry on pharmaceutical analysis, TOCBMJ Open Chemical & Biomedical Methods Journal, 2010, 3, 56-73. Google Scholar

  • [109] Dobes J., Zitka O., Sochor J., Ruttkay-Nedecky B., Babula P., Beklova M., Kynicky J., Hubalek J., Klejdus B., Kizek R., Adam V., Electrochemical tools for determination of phenolic compounds in plants, a review, Int. J. Electrochem. Sci., 2013, 8, 4520– 4542. Google Scholar

  • [110] Wang Y., Calas-Blanchard C., Cortina-Puig M., Baohong L., Marty J-L., An electrochemical method for sensitive determination of antioxidant capacity, Electroanalysis, 2009, 21, 1395 –1400. CrossrefGoogle Scholar

  • [111] Shay K.P., Moreau R.F., Smith E.J., Hagen T.M., Is a lipoic acid a scavenger of reactive oxigen species in vivo? Evidence for its initiation of stress signaling pathways that promote endogenous antioxidant capacity, IUMBM Life, 2008, 60, 362-367. Google Scholar

  • [112] dos Santos Raymundo M., da Silva Paula, M.M., Franco C., Fett R., Quantitative determination of the phenolic antioxidants using voltammetric techniques, LWT Food Sci. Technol., 2007, 40, 1133–1139. CrossrefGoogle Scholar

  • [113] Tougas T.P., Jannetti J.M., Collier W.G., Theoretical and experimental response of biamperometric detector for flow injection analysis, Anal. Chem., 1985, 57, 1377-1381. CrossrefGoogle Scholar

  • [114] Milardovic S., Ivekovic D., Rumenjak V., Grabaric B.S., Use of DPPH• / DPPH redox couple for biamperometric determination of antioxidant activity, Electroanalysis, 2005, 17, 1847-1853. CrossrefGoogle Scholar

  • [115] Milardovic S., Kerekovic I., Derrico R., Rumenjak V., A novel method for flow injection analysis of total antioxidant capacity using enzymatically produced ABTS•+ and biamperometric detector containing interdigitated electrode, Talanta, 2007, 71, 213–220. CrossrefGoogle Scholar

  • [116] Milardovic S., Kerekovic I., Rumenjak V., A flow injection biamperometric method for determination of total antioxidant capacity of alcoholic beverages using bienzymatically produced ABTS∙+, Food Chem., 2007, 105, 1688-1694. CrossrefGoogle Scholar

  • [117] Magalhaes L.M., Santos M., Segundo M.A., Reis S., Lima J.L.F.C., Flow injection based methods for fast screening of antioxidant capacity, Talanta, 2009, 77, 1559-66. CrossrefGoogle Scholar

  • [118] de Queiroz Ferreira R., Avaca L.A., Electrochemical determination of the antioxidant capacity: the ceric reducing/antioxidant capacity (CRAC) assay, Electroanalysis, 2008, 20, 1323–1329. CrossrefGoogle Scholar

  • [119] Scheller F., Schubert F., Biosensors, Elsevier, Amsterdam, 1992. Google Scholar

  • [120] Blum L., Coulet P. (Eds), Biosensor principles and application, Marcel Dekker Inc., New York, 1991. Google Scholar

  • [121] Dzyadevych S.V., Arkhypova V.N., Soldatkin A.P., Elskaya A.V., Martelet C., Jaffrezic-Renault N., Amperometric enzyme biosensors: past, present and future, ITBM-RBM, 2008, 29, 171–180. Google Scholar

  • [122] Chen J., Lindmark-Mansson H., Gorton L., Åkesson B., Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods, Int. Dairy J., 2003, 13, 927–935. CrossrefGoogle Scholar

  • [123] Lates V., Marty J.-L., Popescu I.C., Determination of antioxidant capacity by using xanthine oxidase bioreactor coupled with flow-through H2O2 amperometric biosensor, Electroanalysis, 2011, 23, 728–736. Google Scholar

  • [124] Cortina-Puig M., Scangas A.C.H., Marchese Z.S., Andreescu S., Marty J.-L., Calas-Blanchard C., Development of a xanthine oxidase modified amperometric electrode for the determination of the antioxidant capacity, Electroanalysis, 2010, 22, 2429– 2433. CrossrefGoogle Scholar

  • [125] Campanella L., Bonanni A., Favero G., Tomassetti M., Determination of antioxidant properties of aromatic herbs, olives and fresh fruit using an enzymatic sensor, Anal. Bioanal. Chem., 2003, 375, 1011–1016. Google Scholar

  • [126] Campanella L., Gatta T., Gregori E., Tomassetti M., Determination of antioxidant capacity of papaya fruit and papaya-based food and drug integrators, using a biosensor device and other analytical methods, Monatsh. Chem., 2009, 140, 965–972. CrossrefGoogle Scholar

  • [127] Fatima Barroso M., de-los-Santos-Álvarez N., Delerue-Matos C., Oliveira M.B.P.P., Towards a reliable technology for antioxidant capacity and oxidative damage evaluation: electrochemical (bio)sensors, Biosens. Bioelectron., 2011, 30, 1–12. CrossrefGoogle Scholar

  • [128] Cortina-Puig M., Prieto-Simón B., Campas, M., Calas-Blanchard C., Marty J.-L., Determination of the antioxidants’ ability to scavenge free radicals using biosensors, in Bio-farms for nutraceuticals: functional food and safety control by biosensors, Ch. 16, edited by M. T. Giardi, G. Rea and B. Berra, Springer Science+Business Media LLC, Landes Bioscience, New York, 2010. Google Scholar

  • [129] Tammeveski K., Tenno T.T., Mashirin A.A., Hillhouse E.W., Manning P., Mc Neil C.J., Superoxide electrode based on covalently immobilized cytochrome c: modelling studies, Free Radical Biol. Med., 1998, 25, 973-978. Google Scholar

  • [130] Ignatov S., Shishniashvili D., Ge B., Scheller F.W., Lisdat F., Amperometric biosensor based on a functionalized gold electrode for the detection of antioxidants, Biosens. Bioelectron., 2002, 17, 191-199. CrossrefGoogle Scholar

  • [131] Ge B., Lisdat F., Superoxide sensor based on cytochrome c immobilized on mixed-thiol SAM with a new calibration method, Anal. Chim. Acta, 2002, 454, 53-64. Google Scholar

  • [132] Cortina-Puig M., Munoz-Berbel X., Rouillon R., Calas-Blanchard C., Marty J.-L., Development of a cytochrome c-based screenprinted biosensor for the determination of the antioxidant capacity of orange juices, Bioelectrochemistry, 2009, 76, 76-80. CrossrefGoogle Scholar

  • [133] Cortina-Puig M., Munoz-Berbel X., Calas-Blanchard C., Marty J.-L., Electrochemical characterization of a superoxide biosensor based on the co-immobilization of cytochrome c and XOD on SAM-modified gold electrodes and application to garlic samples, Talanta, 2009, 79, 289–294. CrossrefGoogle Scholar

  • [134] Granero A.M., Fernández H., Agostini E., Zón M.A., An amperometric biosensor based on peroxidases from Brassica napus for the determination of the total polyphenolic content in wine and tea samples, Talanta, 2010, 83, 249–255. CrossrefGoogle Scholar

  • [135] Kulys J., Bilitewski U., Schmid R.D., The kinetics of simultaneous conversion of hydrogen peroxide and aromatic compounds at peroxidase electrodes, Bioelectrochem. Bioenerg., 1991, 26, 277-286. CrossrefGoogle Scholar

  • [136] Marko-Varga G., Emneus J., Gorton, L., Ruzgas T., Developement of enzyme-based amperometric sensors for the determination of phenolic compounds, TRAC-Trend. Anal. Chem., 1995, 14, 319-328. CrossrefGoogle Scholar

  • [137] Jakubec P., Bancirova M., Halouzka V., Lojek, A., Ciz M., Denev P., Cibicek N., Vacek J., Vostalova J., Ulrichova J., Hrbac J., Electrochemical sensing of total antioxidant capacity and polyphenol content in wine samples using amperometry online - coupled with microdialysis, J. Agric. Food Chem., 2012, 60, 7836−7843. CrossrefGoogle Scholar

  • [138] Arribas A.S., Martínez-Fernández M., Moreno M., Bermejo E., Zapardiel A., Chicharro M., Analysis of total polyphenols in wines by FIA with highly stable amperometric detection using carbon nanotube-modified electrodes, Food Chem., 2013, 136, 1183–1192. CrossrefGoogle Scholar

  • [139] Rodríguez Cid de León G.I., Gómez Hernández M., Domínguez y Ramírez A.M., Medina López J.R., Alarcón Ángeles G., Morales Pérez A., Adaptation of DPPH method for antioxidant determination, ECS Transactions, 2011, 36, 401-411. Google Scholar

  • [140] Bard A.J., Faulkner L.R., Electrochemical methods. Fundamentals and applications, 2nd edition., Wiley & Sons Inc., New York, Chicester, Weinheim, 2001. Google Scholar

  • [141] Andrei V., Bunea A.I., Tudorache A., Gaspar S., Vasilescu A., Simple DPPH∙-based electrochemical assay for the evaluation of the antioxidant capacity: a thorough comparison with spectrophotometric assays and evaluation with real-world samples, Electroanalysis, 2014, 26, 2677-2685. CrossrefGoogle Scholar

  • [142] Lapidot T., Harel S., Akiri B., Granit R., Kanner J., pH-dependent forms of red wine anthocyanins as antioxidants, J. Agric. Food Chem., 1999, 47, 67–70. CrossrefGoogle Scholar

  • [143] Noipa T., Srijaranai S., Tuntulani T., Ngeontae W., New approach for evaluation of the antioxidant capacity based on scavenging DPPH free radical in micelle systems, Food Res. Int. 2011, 44, 798–806. CrossrefGoogle Scholar

  • [144] Pisoschi A.M., Danet A.F., Construction and determination of the analytical characteristics of a potentiometric glucose biosensor, Rev. Chim. (Bucharest), 2004, 55, 843-850. Google Scholar

  • [145] Tessutti L.S., Macedo D.V., Kubota L.T., Alves A.A., Measuring the antioxidant capacity of blood plasma using potentiometry, Anal. Biochem., 2013, 441, 109–114. Google Scholar

  • [146] Bratovcic A., Odobasic A., Catic S., The advantages of the use of ion-selective potentiometry in relation to UV/VIS spectroscopy, Agric. Conspec. Sci., 2009, 74, 139-142. Google Scholar

  • [147] Goyal R.N., Brajter-Toth A., Dryhurst G., Further insights into the electrochemical oxidation of uric acid, J. Electroanal. Chem. Iterfacial Electrochem., 1982, 131, 181-202. CrossrefGoogle Scholar

  • [148] Brainina Kh.Z., Gerasimova E.L., Varzakova D.P., Balezin S.L., Portnov I.G., Makutina V.A., Tyrchaninova E.V., Potentiometric method for evaluating the oxidant/antioxidant activity of seminal and follicular fluids and clinical significance of this parameter for human reproductive function, TOCBMJ, Open Chemical & Biomedical Methods Journal, 2012, 5, 1-7. Google Scholar

  • [149] Brainina Kh.Z., Galperin L.G., Gerasimova E.L., Khodos M.Ya., Noninvasive potentiometric method of determination of skin oxidant/antioxidant activity, IEEE Sensors J., 2012, 12, 527-532. CrossrefGoogle Scholar

  • [150] Brainina Kh.Z., Gerasimova E.L., Kasaikina O.T., Ivanova A.V., Antioxidant activity evaluation assay based on peroxide radicals generation and potentiometric measurement, Anal. Lett., 2011, 44, 1405-1415. CrossrefGoogle Scholar

  • [151] Lugonja N.M., Stankovic D.M., Spasic S.D., Roglic G.M., Manoilovic D.D., Vrvic M.M., Comparative electrochemical determination of total antioxidant activity in infant formula with breast milk, Food Anal. Method., 2014, 7, 337-344. CrossrefGoogle Scholar

  • [152] Harvey D., Modern Analytical Chemistry, McGraw-Hill, New York, 1999. Google Scholar

  • [153] Ziyatdinova G.K., Voloshin A.V., Gilmutdinov A.Kh., Budnikov H.C., Ganeev T.S., Application of constant-current coulometry for estimation of plasma total antioxidant capacity and its relationship with transition metal contents, J. Pharm. Biomed. Anal., 2006, 40, 958–963. CrossrefGoogle Scholar

  • [154] Ziyatdinova G.K., Budnikov H.C., Pogoreltzev V.I., Ganeev T.S., The application of coulometry for total antioxidant capacity determination of human blood, Talanta, 2006, 68, 800–805. CrossrefGoogle Scholar

  • [155] Alonso Á.M., Guillén D.A., Barroso C.G., Development of an electrochemical method for the determination of antioxidant activity. Application to grape-derived products, Eur. Food Res. Technol., 2003, 216, 445–448. Google Scholar

  • [156] Zielińska D., Wiczkowski W., Piskuła M.K., Evaluation of photochemiluminiscent, spectrophotometric and cyclic voltammetry methods for the measurement of the antioxidant capacity: the case of roots separated from buckwheat sprouts, Pol. J. Food Nutr. Sci., 2008, 58, 65-72. Google Scholar

  • [157] Cuartero M., Ortuño J.A., Truchado P., García M.S., Tomás- Barberán F.A., Albero M.I., Voltammetric behaviour and squarewave voltammetric determination of the potent antioxidant and anticarcinogenic agent ellagic acid in foodstuffs, Food Chem., 2011, 128, 549–554. CrossrefGoogle Scholar

  • [158] Chen J., Gorton L., Åkesson B., Electrochemical studies on antioxidants in bovine milk, Anal. Chim. Acta, 2002, 474, 137–146. Google Scholar

  • [159] Ceto X., Cespedes F., Pividori M.I., Gutierrez J.M., del Valle M., Resolution of phenolic antioxidant mixtures employing a voltammetric bio-electronic tongue, Analyst, 2012, 137, 349-356. CrossrefGoogle Scholar

  • [160] Korotkova E.I., Freinbichler W., Linert W., Dorozhko E.V., Bukkel M.V., Plotnikov E.V., Voronova O.A., Study of total antioxidant activity of human serum blood in the pathology of alcoholism, Molecules, 2013, 18, 1811-1818. CrossrefGoogle Scholar

  • [161] Teixeira J.G., Barrocas Dias C., Teixeira M.D., Electrochemical characterization and quantification of the strong antioxidant and antitumor agent pomiferin, Electroanalysis, 2009, 21, 2345 – 2353. CrossrefGoogle Scholar

  • [162] Kahl M., Golden T.D., Electrochemical determination of phenolic acids at a Zn/Al layered double hydroxide film modified glassy carbon electrode, Electroanalysis, 2014, 26, 1664-1670. CrossrefGoogle Scholar

  • [163] Wang Z., Yang F., Zeng H., Qin X.J., Luo J.J., Li Y., Xiao D., Voltammetric determination of TBHQ at a glassy carbon electrode surface activated by in situ chemical oxidation, Analyst, 2014, 139, 3622-3628. CrossrefGoogle Scholar

  • [164] Fatima Barroso M., Delerue-Matos C., Oliveira M.B.P.P., Electrochemical evaluation of total antioxidant capacity of beverages using a purine-biosensor, Food Chem., 2012, 132, 1055–1062. CrossrefGoogle Scholar

  • [165] Kamel A.H., Moreira F.T.C., Delerue-Matos C., Sales M.G.F., Electrochemical determination of antioxidant capacities in flavored waters by guanine and adenine biosensors, Biosens. Bioelectron., 2008, 24, 591–599. CrossrefGoogle Scholar

  • [166] Kracmarova A., Pohanka M., Electrochemical determination of low-molecular-weight antioxidants in blood serum, Chem. Listy, 2014, 108, 64-69. Google Scholar

  • [167] Silva T.R., Westphal E., Gallardo H., Vieira I.C., Ionic organic film sensor for determination of phenolic compounds, Electroanalysis, 2014, 26, 1801-1809. CrossrefGoogle Scholar

  • [168] Amatatongchai M., Laosing S., Chailapakul O., Nacapricha D., Simple flow injection for screening of total antioxidant capacity by amperometric detection of DPPH radical on carbon nanotube modified-glassy carbon electrode, Talanta, 2012, 97, 267–272. CrossrefGoogle Scholar

  • [169] Campanella L., Bonanni A., Bellantoni D., Tomassetti M., Biosensors for determination of total antioxidant capacity of phytotherapeutic integrators: comparison with other spectrophotometric, fluorimetric and voltammetric methods, J. Pharmaceut. Biomed., 2004, 35, 303–320. CrossrefGoogle Scholar

  • [170] Castaignède V., Durliat H., Comtat M., Amperometric and potentiometric determination of catechin as model of polyphenols in wines, Anal. Lett., 2003, 36, 1707-1720. CrossrefGoogle Scholar

  • [171] Zhang D., Chu L., Liu Y., Wang A., Ji B., Wu W., Zhou F., Wei Y., Cheng Q., Cai S., Xie L., Jia G., Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory, J. Agric. Food Chem., 2011, 59, 10277–10285. CrossrefGoogle Scholar

  • [172] Keyrouz R., Abasq M.L., Le Bourvellec C., Blanc N., Audibert L., Gall E., Hauchard D., Total phenolic contents, radical scavenging and cyclic voltammetry of seaweeds from Brittany, Food Chem., 2011, 126, 831–836. CrossrefGoogle Scholar

  • [173] Pekal A., Drozdz P., Biesaga M., Pyrzynska K., Polyphenolic content and comparative antioxidant capacity of flavoured black teas, Int. J. Food Sci. Nutr., 2012, 63, 742–748. CrossrefGoogle Scholar

  • [174] Ziyatdinova G.K., Budnikov H.C., Evaluation of the antioxidant properties of spices by cyclic voltammetry, J. Anal. Chem., 2014, 69, 990-997. CrossrefGoogle Scholar

  • [175] Firuzi O., Lacanna A., Petrucci R., Marrosu G., Saso L., Evaluation of the antioxidant activity of flavonoids by ferric reducing antioxidant power assay and cyclic voltammetry, Biochim. Biophys. Acta, 2005, 1721, 174– 184. CrossrefGoogle Scholar

  • [176] Amidi S., Mojab F., Moghaddam A.B., Tabib K., Kobarfard F., A simple electrochemical method for the rapid estimation of antioxidant potentials of some selected medicinal plants, Iran. J. Pharm. Res., 2012, 11, 117-121. Google Scholar

  • [177] Campanella L., Martini E., Tomassetti M., Antioxidant capacity of the algae using a biosensor method, Talanta, 2005, 66, 902–911. CrossrefGoogle Scholar

  • [178] Malagutti A.R., Zuin V.G., Cavalheiro E.T.G., Mazo L.H., Determination of rutin in green tea infusions using squarewave voltammetry with a rigid carbon-polyurethane composite electrode, Electroanalysis, 2006, 18, 1028-1034. CrossrefGoogle Scholar

  • [179] Novak I., Seruga M., Komorsky-Lovric S., Electrochemical characterization of epigallocatechin gallate using square-wave voltammetry, Electroanalysis, 2009, 21, 1019-1025. CrossrefGoogle Scholar

  • [180] Komorsky-Lovric S., Novak I., Determination of ellagic acid in strawberries, raspberries and blackberries by square-wave voltammetry, Int. J. Electrochem. Sci., 2011, 6, 4638-4647. Google Scholar

  • [181] Liu J., Su B., Lagger G., Tacchini P., Girault H.H., Antioxidant redox sensors based on DNA modified carbon screen-printed electrodes, Anal. Chem., 2006, 78, 6879-6884. CrossrefGoogle Scholar

  • [182] Adam V., Mikelova R., Hubalek J., Hanustiak P., Beklova M., Hodek P., Horna A., Trnkova L., Stiborova M., Zeman L., Kizek R., Utilizing of square wave voltammetry to detect flavonoids in the presence of human urine, Sensors, 2007, 7, 2402-2418. CrossrefGoogle Scholar

  • [183] Bordonaba J.G., Terry L.A., Electrochemical behaviour of polyphenol rich fruit juices using disposable screen-printed carbon electrodes: Towards a rapid sensor for antioxidant capacity and individual antioxidants, Talanta, 2012, 90, 38– 45. CrossrefGoogle Scholar

  • [184] Robledo S.N., Tesio A.Y., Ceballos C.D., Zon M.A., Fernandez H., Electrochemical ultra-micro sensors for the determination of syntetic and natural antioxidants in edible vegetable oils, Sensor. Actuat. B-Chem., 2014, 192, 467-473. CrossrefGoogle Scholar

  • [185] Porfirio D.A., de Queiroz Ferreira R., Malagutti A.R., Agostini Valle M.A., Electrochemical study of the increased antioxidant capacity of flavonoids through complexation with iron(II) ions, Electrochim. Acta, 2014, 141, 33–38. Google Scholar

  • [186] Rodriguez-Sevilla E., Ramirez-Silva, M.T., Romero-Romo M., Ibarra-Escutia P., Palomar-Pardave M., Electrochemical quantification of the antioxidant capacity of medicinal plants using biosensors, Sensors, 2014, 14, 14423-14439. CrossrefGoogle Scholar

  • [187] Potkonjaka N.I., Veselinovic D.S., Novacovic M.M., Gorjanovic S.Z., Pezo L.L., Suznjevic D.Z., Antioxidant activity of propolis extract from Serbia: a polarographic approach, Food Chem. Toxicol., 2012, 50, 3614-3618. CrossrefGoogle Scholar

  • [188] Gorjanovic S.Z., Alvarez-Suarez J.M., Novakovic M.M., Pastor F.T., Pezoa L., Battino M., Suznjevic D.Z., Comparative analysis of antioxidant activity of honey of different floral sources using recently developed polarographic and various spectrophotometric assays, J. Food Compos. Anal., 2013, 30, 13–18. CrossrefGoogle Scholar

About the article

Received: 2014-11-16

Accepted: 2015-02-02

Published Online: 2015-04-07


Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0099.

Export Citation

© 2015 Aurelia Magdalena Pisoschi et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Pedro Rocha, Ângela Vilas‐Boas, Natacha Fontes, Dulce Geraldo, and Fátima Bento
Electroanalysis, 2019
[2]
Khiena Brainina, Natalia Stozhko, and Marina Vidrevich
Antioxidants, 2019, Volume 8, Number 8, Page 297
[3]
Galina E. Filonova, Elena N. Nikolaevskaya, Artem V. Kansuzyan, Irina V. Krylova, Mikhail P. Egorov, Viatcheslav V. Jouikov, and Mikhail A. Syroeshkin
European Journal of Organic Chemistry, 2019, Volume 2019, Number 26, Page 4128
[4]
T. N. Kulikova, A. V. Porfireva, V. V. Vorobev, A. A. Saveliev, G. K. Ziyatdinova, and G. A. Evtugyn
Analytical Letters, 2019, Volume 52, Number 16, Page 2562
[5]
Ivan V. Smolyaninov, Olga V. Pitikova, Eugenia O. Korchagina, Andrey I. Poddel'sky, Georgy K. Fukin, Svetlana A. Luzhnova, Andrey M. Tichkomirov, Elena N. Ponomareva, and Nadezhda T. Berberova
Bioorganic Chemistry, 2019, Volume 89, Page 103003
[6]
Chrys O. Chikere, Nadimul Haque Faisal, Paul Kong Thoo Lin, and Carlos Fernandez
Journal of Solid State Electrochemistry, 2019, Volume 23, Number 6, Page 1795
[7]
Karol K. Krzymiński, Alexander D. Roshal, Paweł B. Rudnicki‐Velasquez, and Krzysztof Żamojć
Luminescence, 2019, Volume 34, Number 5, Page 512
[8]
Wafaa A. Mohamed, Maisa M.A. Mansour, and Mohamed Z.M. Salem
Journal of Cleaner Production, 2019, Volume 219, Page 846
[9]
Elena N. Nikolaevskaya, Artem V. Kansuzyan, Galina E. Filonova, Vera A. Zelenova, Valery M. Pechennikov, Irina V. Krylova, Mikhail P. Egorov, Viatcheslav V. Jouikov, and Mikhail A. Syroeshkin
European Journal of Inorganic Chemistry, 2019, Volume 2019, Number 5, Page 676
[10]
Stuart Belli, Miriam Rossi, Nora Molasky, Lauren Middleton, Charles Caldwell, Casey Bartow-McKenney, Michelle Duong, Jana Chiu, Elizabeth Gibbs, Allison Caldwell, Christopher Gahn, and Francesco Caruso
Antioxidants, 2019, Volume 8, Number 1, Page 14
[11]
Y. Kazakov, M. Khodos, M. Vidrevich, and K. Brainina
Critical Reviews in Analytical Chemistry, 2018, Page 1
[12]
Georgia A. Zissimou, Andreas Kourtellaris, Maria Manoli, and Panayiotis A. Koutentis
The Journal of Organic Chemistry, 2018
[13]
Nicolò Dossi, Rosanna Toniolo, Fabio Terzi, Nicola Sdrigotti, Franco Tubaro, and Gino Bontempelli
Analytica Chimica Acta, 2018
[14]
Karla Carneiro de Siqueira Leite, Luane Ferreira Garcia, German Sanz Lobón, Douglas Vieira Thomaz, Emily Kussmaul Gonçalves Moreno, Murilo Ferreira de Carvalho, Matheus Lavorenti Rocha, Wallans Torres Pio dos Santos, and Eric de Souza Gil
Revista Brasileira de Farmacognosia, 2018
[16]
Flavio Della Pelle, Annalisa Scroccarello, Manuel Sergi, Marcello Mascini, Michele Del Carlo, and Dario Compagnone
Food Chemistry, 2018
[17]
Jan Hrbac, David Novak, Petr Knopf, Marek Svarc, and Jan Vacek
Journal of Electroanalytical Chemistry, 2018
[19]
Antonina A. Vishtorskaya, Evgeniya A. Saverina, Valery M. Pechennikov, Irina V. Krylova, Andrey V. Lalov, Mikhail A. Syroeshkin, Mikhail P. Egorov, and Viatcheslav V. Jouikov
Journal of Organometallic Chemistry, 2018
[20]
Sylwester Mazurek, Roman Szostak, Agnieszka Kita, Alicja Z. Kucharska, Anna Sokół-Łętowska, and Karel Hamouz
Food Analytical Methods, 2017
[21]
Karina Pérez-Cruz, Mauricio Moncada-Basualto, Javier Morales-Valenzuela, Germán Barriga-González, Patricio Navarrete-Encina, Luis Núñez-Vergara, J.A. Squella, and Claudio Olea-Azar
Arabian Journal of Chemistry, 2017
[22]
Sonia Losada-Barreiro and Carlos Bravo-Díaz
European Journal of Medicinal Chemistry, 2017, Volume 133, Page 379
[23]
Elena R. Milaeva, Vladimir Yu. Tyurin, Dmitry B. Shpakovsky, Anna A. Moiseeva, Yulia A. Gracheva, Taisiya A. Antonenko, Viktoria V. Maduar, Dmitry I. Osolodkin, Vladimir A. Palyulin, and Elena F. Shevtsova
Journal of Organometallic Chemistry, 2017, Volume 839, Page 60
[24]
Nimisha Jadon, Rajeev Jain, Nirupama Guru Aribam, and Priya Chauhan
Journal of The Electrochemical Society, 2017, Volume 164, Number 4, Page H266
[25]
Aurelia Magdalena Pisoschi, Aneta Pop, Carmen Cimpeanu, and Gabriel Predoi
Oxidative Medicine and Cellular Longevity, 2016, Volume 2016, Page 1
[26]
Nicolò Dossi, Rosanna Toniolo, Flavia Impellizzieri, Franco Tubaro, Gino Bontempelli, Fabio Terzi, and Evandro Piccin
Analytica Chimica Acta, 2017, Volume 950, Page 41
[27]
Fernando Belmont-Bernal, Julio César Aguilar, Estrella Ramos, and Patricia Guadarrama
ChemistrySelect, 2016, Volume 1, Number 16, Page 5091
[28]
Rita Maria Sousa Carvalho, Sakae Yotsumoto Neto, Fernando Carvalho Silva, Flavio Santos Damos, and Rita de Cássia Silva Luz
Electroanalysis, 2016, Volume 28, Number 12, Page 2930
[29]
Kh. Z. Brainina, A. S. Zaharov, and M. B. Vidrevich
Anal. Methods, 2016, Volume 8, Number 28, Page 5667
[30]
M. Markina, E. Lebedeva, L. Neudachina, N. Stozhko, and Kh. Brainina
Analytical Letters, 2016, Volume 49, Number 12, Page 1804

Comments (0)

Please log in or register to comment.
Log in