Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1 (Apr 2015)

Issues

Micellar Liquid Chromatography from Green Analysis Perspective

Rania N. El-Shaheny
  • Corresponding author
  • Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mahmoud H. El-Maghrabey
  • Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fathalla F. Belal
  • Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-28 | DOI: https://doi.org/10.1515/chem-2015-0101

Abstract

Micellar liquid chromatography (MLC) is a simple well-established branch of high-performance liquid chromatography. The applications of MLC for the determination of numerous compounds in pharmaceutical formulations, biological samples, food, and environmental samples have been growing very rapidly. MLC technique has several advantages over other techniques, such as simultaneous separation of charged and uncharged solutes, rapid gradient capability, direct on-column injection of physiological fluids, unique separation selectivity, high reproducibility, robustness, enhanced luminescence detection, low cost, and safety. This review is devoted to the evaluation of the agreement of MLC with the principles of green chemistry which recently represents a universal trend. Also, it provides an overview on the basics of MLC, in addition to a survey of MLC methods published in the past five years for the assay of various compounds in different matrices.

Graphical Abstract

Keywords : micellar liquid chromatography; green analytical chemistry; pharmaceutical analysis; biological analysis

References

  • Google Scholar

  • [1] Pyell U., Electrokinetic Chromatography: Theory, Instrumentation and Applications, John Wiley & Sons, Ltd., England, 2006. Google Scholar

  • [2] Terabe S., Capillary Separation: Micellar Electrokinetic Chromatography, Annu. Rev. Anal. Chem., 2009, 2, 99. CrossrefGoogle Scholar

  • [3] Pramauro E., Prevot A.B., Detergent Formulations in Separation Science, In: Showell M.S., (Ed.), Handbook of Detergents, Part D: Formulations – Surfactant Science Series, Volume 128, Taylor & Francis Group, LLC, Florida, 2006. Google Scholar

  • [4] Khaledi M.G., Micelles as separation media in high-performance liquid chromatography and high-performance capillary electrophoresis: overview and perspective, J. Chromatogr. A., 1997, 780, 3-40. Google Scholar

  • [5] Berthod A., García-Alvarez-Coque M.C., Micellar Liquid Chromatography, Marcel Dekker, New York, 2000. Google Scholar

  • [6] Esteve-Romero J., Carda-Broch S., Gil-Agustí M., Capella-Peiró M.E., Bose D., Micellar liquid chromatography for the determination of drug materials in pharmaceutical preparations and biological samples, Trends Anal. Chem., 2005, 24, 75- 91. Google Scholar

  • [7] Ruiz‐Ángel M.J., García‐Álvarez‐Coque M.C., Alain Berthod A., New Insights and Recent Developments in Micellar Liquid Chromatography, Sep. Purif. Rev. 2009, 38, 45-96. CrossrefGoogle Scholar

  • [8] Kawczak P., Bączek T., Recent theoretical and practical applications of micellar liquid chromatography (MLC) in pharmaceutical and biomedical analysis, Cent. Eur. J. Chem., 2012, 10, 570-584. Google Scholar

  • [9] Rambla-Alegre M., Basic Principles of MLC, Chromatogr. Research Int., 2012, http://dx.doi.org/10.1155/2012/898520. CrossrefGoogle Scholar

  • [10] Kalyankar T.M., Kulkarni P.D., Wadher S.J., Pekamwar S.S., Applications of Micellar Liquid Chromatography in Bioanalysis: A review, J. App. Pharm. Sci., 2014, 4, 128-134. Google Scholar

  • [11] Peris-Vicente J., Casas-Breva I., Pasqual Roca-Genovés P., Esteve-Romero J., Application of micellar liquid chromatography for the determination of antitumoral and antiretroviral drugs in plasma, Bioanalysis, 2014, 6, 1975-1988. CrossrefGoogle Scholar

  • [12] De La Guardia M., Armenta S., Green Analytical Chemistry, In: Barceló D. (Ed.), Comprehensive Analytical Chemistry, Elsevier, Oxford, UK, 2011. Google Scholar

  • [13] García-Álvarez-Coque M.C., Torres-Lapasió J.R., Baeza-Baeza J.J., Modelling of retention behaviour of solutes in micellar liquid chromatography, J. Chromatogr. A., 1997, 780, 129-148. Google Scholar

  • [14] Ruiz-Angel M.J., Carda-Broch S., Torres-Lapasió J.R., García-Alvarez-Coque M.C., Retention mechanisms in micellar liquid chromatography. J. Chromatogr. A, 2009, 1216, 1798-1814. Google Scholar

  • [15] Khaledi M.G., Strasters J.K., Rodgers A.H., Breyer E.D., Simultaneous enhancement of separation selectivity and solvent strength in reversed-phase liquid chromatography using micelles in hydro-organic solvents, Anal. Chem., 1990, 62, 130-136. CrossrefGoogle Scholar

  • [16] Ruiz-Angel M.J., Carda-Broch S., García-Alvarez-Coque M.C., Chromatographic efficiency in micellar liquid chromatography: should it be still a topic of concern?, Sep. Purif. Rev., 2013, 42, 1-27 CrossrefGoogle Scholar

  • [17] CIR publication, Final report on the safety assessment of sodium lauryl sulfate and ammonium lauryl sulfate, Int. J. Toxicol., 1983, 2, 127–181. Google Scholar

  • [18] CIR publication, Final report on the safety assessment of cetrimonium chloride, cetrimonium bromide, and steartrimonium chloride, Int. J. Toxicol., 1997, 16, 195-220. Google Scholar

  • [19] Talmage S.S., Environmental and Human Safety of Major Surfactants: Alcohol Ethoxylates and Alkylphenol Ethoxylates, CRC Press Inc., Florida, 1994. Google Scholar

  • [20] Thomas O.R.T., White G.F., Metabolic pathway for the biodegradation of sodium dodecyl sulphate by Pseudomonas sp-c12b, Biotechnol. Appl. Biochem., 1989, 11, 318-327. Google Scholar

  • [21] Scott M.T., Jones M.N., The biodegradation of surfactants in the environment, Biochim. Biophys. Acta., 2000, 1508, 235-251. Google Scholar

  • [22] Kravetz L., Salanitro J.P., Dorn P.B., Guin K.F., Influence of hydrophobe type and extent of branching on environmental response factors of non-ionic surfactants, J. Am. Oil. Chem. Soc., 1991, 68, 610-618. CrossrefGoogle Scholar

  • [23] Nishiyama N., Toshima Y., Ikeda Y., Biodegradation of alkyltrimethylammonium salts in activated sludge, Chemosphere, 1995, 30, 593-603. CrossrefGoogle Scholar

  • [24] Takenaka S., Tonoki T., Taira K., Murakami S., Aoki K., Adaptation of Pseudomonas sp. strain 7-6 to quaternary ammonium compounds and their degradation via dual pathways, Appl. Environ. Microbiol, 2007, 73, 1797-1802. Google Scholar

  • [25] Gilomen K., Stauffer H.P., Meyer V.R., Detoxification of acetonitrile-water wastes from liquid chromatography, Chromatographia, 1995, 41, 488-491. Google Scholar

  • [26] Martínez-Algaba C., Escuder-Gilabert L., Sagrado S., Villanueva-Camañas R.M., Medina-Hernández M.J., Comparison between sodium dodecyl sulphate and cetyltrimethylammonium bromide as mobile phases in the micellar liquid chromatography determination of non-steroidal anti-inflammatory drugs in pharmaceuticals, J. Pharm. Biomed. Anal., 2004, 36, 393–399. CrossrefGoogle Scholar

  • [27] Garcia-Alvarez-Coque M.C., Carda-Broch S., Direct injection of physiological fluids in micellar liquid chromatography, J. Chromatogr. B, 1999, 736, 1-18. Google Scholar

  • [28] Madamba-Tan L.S., Strasters J.K., Khaledi M.G., Gradient elution in micellar liquid chromatography. I. Micelle concentration gradient, J. Chromatogr. A, 1994, 683, 321-334. Google Scholar

  • [29] Madamba-Tan L.S., Strasters J.K., Khaledi M.G., Gradient elution in micellar liquid chromatography. II. Organic modifier gradients, J. Chromatogr. A, 1994, 683, 335-345. Google Scholar

  • [30] Armstrong D.W., Hinze W.L., Bui K.H., Singh N.H. Enhanced fluorescence and room temperature liquid phosprorescence detection in pseudophase liquid chromatography (PLC), Anal. Lett. 1981, 14, 1659-1667. CrossrefGoogle Scholar

  • [31] Cline Love L.J., Habarta J.G., Dorsey J.G., The micelle-analytical chemistry interface, Anal. Chem., 1984, 56, 1132-1148. CrossrefGoogle Scholar

  • [32] Hadjmohammadi M.R., Fatemi M.H., Separation and improvement in detection of polycyclic aromatic hydrocarbons by reverse-phase high performance liquid chromatography using micellar mobile phase and fluorescence detector, J. Liq. Chromatogr., 1995, 18, 2569-2578. CrossrefGoogle Scholar

  • [33] Fernández-Navarro J.J., Ruiz-Ángel M.J., García-Álvarez-Coque M.C., Reversed-phase liquid chromatography without organic solvent for determination of tricyclic antidepressants, J. Sep. Sci., 2012, 35, 1303-1309. CrossrefGoogle Scholar

  • [34] Yadav S.S., Rao J.R., Micellar liquid chromatographic analysis for simultaneous determination of atenolol and hydrochlorothiazide in tablet dosage form, Int. J. Pharm. Pharm. Sci., 2013, 5, 63-67. Google Scholar

  • [35] Sharma M.C., Sharma S., Kohli D.V., Chaturvedi S.C., Micellar liquid chromatographic analytical method development and validation of determination of atorvastatin calcium and pioglitazone in tablet dosage form, Der Pharm. Chem., 2010, 2, 273-280. Google Scholar

  • [36] El-Shaheny R.N., El-Enany N.M., Belal F.F. A green HPLC method for the analysis and stability study of flavoxate HCl using micellar eluent, Anal. Methods, 2014, 6, 1001-1010. Google Scholar

  • [37] Memon N., Shaikh H.I., Solangi A.R., Selectivity of Brij-35 in micellar liquid chromatographic separation of positional isomers, Chromatogr. Res. Int., 2012, http://dx.doi.org/10.1155/2012/458153. CrossrefGoogle Scholar

  • [38] El-Wasseef D.R., Simultaneous Determination of Metformin, Nateglinide and Gliclazide in Pharmaceutical Preparations Using Micellar Liquid Chromatography, Int. J. Biomed. Sci., 2012, 8, 144-151. Google Scholar

  • [39] Kulikov A.U., Boichenkob, A.P., Verushkin A.G., Optimization of micellar LC conditions for separation of opium alkaloids and their determination in pharmaceutical preparations, Anal. Methods, 2011, 3, 2749- 2757. CrossrefGoogle Scholar

  • [40] Sharma M.C., Sharma S., Micellar liquid chromatographic method development for determination and stability indicating of nelfinavir mesylate in pharmaceutical formulation, Int. J. Pharm Tech. Res., 2011, 3, 248-252. Google Scholar

  • [41] El-Shaheny R.N., Stability-indicating micellar LC methods with time-programmed UV detection for determination of three oxicams in pharmaceuticals with direct injection of gel and suppositories, J. Liq. Chromatogr. Related Technol., 2015, 38, 163-171. Google Scholar

  • [42] Donga Y.M., Lia N., Ana Q., Lu N.W., A Novel nonionic micellar liquid chromatographic method for simultaneous determination of pseudoephedrine, paracetamol, and chlorpheniramine in cold compound preparations, J. Liq. Chromatogr. Related Technol., 2015, 38, 251-258. CrossrefGoogle Scholar

  • [43] Walash M.I., Metwally M., Eid M., El-Shaheny R., Development and validation of a micellar high-performance liquid chromatographic method for determination of risedronate in raw material and in a pharmaceutical formulation: application to stability studies, J. AOAC. Int., 2010, 93, 1228-1235. Google Scholar

  • [44] Jaipang S., Santiarworn D., Liawruangrath S., Liawruangrath B., Micellar liquid chromatographic determination of sildenafil citrate in pharmaceutical formulations, 2013, Chiang Mai J. Sci., 2013, 40, 408-418. Google Scholar

  • [45] Peris-Vicente J., Carda-Broch S., Esteve-Romero J., Quantification of tamoxifen in pharmaceutical formulations using micellar liquid chromatography, Anal. Sci., 2014, 30, 925-930. CrossrefGoogle Scholar

  • [46] Mishra R., Ashtputre P., Matkar S., Malvia H., Khan M.A., Pare A., Micellar liquid chromatographic method development for determination of 2,4,5,6-tetraamino pyrimidine sulphate salt, Asian J. Pharm. Life Sci., 2011, 1, 58-63. Google Scholar

  • [47] Rizk M.S., Merey H.A., Tawakkol Sh.M., Sweilam M.N., Development and validation of a stability-indicating micellar liquid chromatographic method for the determination of timolol maleate in the presence of its degradation products, J. Chromatogr. Sci., 2015, 53, 503-510. CrossrefGoogle Scholar

  • [48] Sharma S., Sharma M.C., Kohli D.V., Conventional and micellar liquid Chromatography Method with Validation for torsemide and spironolactone in tablet combined dosage form, Der Pharm. Lett., 2010, 2, 374-381. Google Scholar

  • [49] Peris-Vicente J., Villareal-Traver M., Casas-Breva I., Carda-Broch S., Esteve-Romero J., A micellar liquid chromatography method for the quantification of abacavir, lamivudine, and raltegravir in plasma, J. Pharm. Biomed. Anal., 2014, 98, 351-355. CrossrefGoogle Scholar

  • [50] Rodenas-Montano J., Ortiz-Bolsico C., Ruiz-Angel M.J., García-Alvarez-Coque M.C., Implementation of gradients of organic solvent in micellar liquid chromatography using DryLab®: Separation of basic compounds in urine samples, J. Chromatogr. A., 2014, 1344, 31–41. Google Scholar

  • [51] Subhra H., Devasish B., Esteve-Romero J., Abhilasha D., Micellar liquid chromatography for the determination of some less prescribed benzodiazepines, E. J. Chem., 2012, 9, 443-450. Google Scholar

  • [52] Al Lawati H.A.J., Kadavilpparampu A.M., Suliman F.O., Combination of capillary micellar liquid chromatography with on-chip microfluidic chemiluminescence detection for direct analysis of buspirone in human plasma, Talanta, 2014, 127, 230–238. Google Scholar

  • [53] Esteve-Romero J., Marco-Peiro S., Rambla-Alegre M., Durgbanshi A., Bose D., Mourya S.K., A Micellar liquid chromatographic method for the determination of carbaryl and 1-naphthol in biological samples, J. Liq. Chromatogr. Related Technol., 2012, 35, 355–361. Google Scholar

  • [54] Agrawal N., Esteve-Romero J., Bose D., Dubey N.P., Peris-Vicente J., Carda-Broch S., Determination of selective serotonin reuptake inhibitors in plasma and urine by micellar liquid chromatography coupled to fluorescence detection, J. Chromatogr. B., 2014, 965, 142-149. Google Scholar

  • [55] Peris-Vicente J., Villarreal-Traver M., Casas-Breva I., Carda-Broch S., Esteve-Romero J., Use of micellar liquid chromatography to analyze darunavir, ritonavir, emtricitabine, and tenofovir in plasma, J. Sep. Sci., 2014, 37, 2825-2832. CrossrefGoogle Scholar

  • [56] Li N., Li C.L., Lu N.W., Dong Y.M., A novel micellar per aqueous liquid chromatographic method for simultaneous determination of diltiazem hydrochloride, metoprolol tartrate and isosorbide mononitrate in human serum, J. Chromatogr. B., 2014, 967, 90-97. Google Scholar

  • [57] Aranda E.O., Esteve-Romero J., Rambla-Alegre M., Martinavarro-Domínguez A., Bose D., Monitoring disopyramide, lidocaine, and quinidine by micellar liquid chromatography, J. AOAC. Int., 2011, 94, 537-542. Google Scholar

  • [58] Walash M., Belal F., El-Enany N., Zayed S., Micellar liquid chromatographic determination of felodipine in tablets and human plasma with fluorescence detection: application to stability studies and content uniformity testing, Anal. Methods, 2014, 6, 3401-3409. CrossrefGoogle Scholar

  • [59] Walash M.I., Belal F., El-Enany N., Eid M., El-Shaheny R.N., Simultaneous determination of floctafenine and its hydrolytic degradation product floctafenic acid using micellar liquid chromatography with applications to tablets and human plasma, J. AOAC. Int., 2013, 96, 1315-1324. CrossrefGoogle Scholar

  • [60] Soltani S., Abolghasem Jouyban A., A validated micellar LC method for simultaneous determination of furosemide, metoprolol and verapamil in human plasma, Bioanalysis, 2012, 4, 41-48. CrossrefGoogle Scholar

  • [61] Rizk M., Toubar S.S., El-Alamin M.M.A., Azab M.M.M., Micellar high performance liquid chromatographic determination of itraconazole in bulk, pharmaceutical dosage forms and human plasma, Eur. J. Chem., 2014, 5, 11-17. CrossrefGoogle Scholar

  • [62] Gualdesi M.S., Esteve-Romero J., Briñón M.C., Raviolo M.A., Development and validation of a stability indicating method for seven novel derivatives of lamivudine with anti-HIV and anti-HBV activity in simulated gastric and intestinal fluids, J. Pharm. Biomed. Anal., 2013, 78-79, 52-56. Google Scholar

  • [63] Marco-Peiró S., Beltrán-Martinavarro B., Rambla-Alegre M., Peris-Vicente J., Esteve-Romero J., Validation of an analytical methodology to quantify melamine in body fluids using micellar liquid chromatography, Talanta, 2011, 88, 617-622. Google Scholar

  • [64] Chin-Chen M.L., Rambla-Alegre M., Durgavanshi A., Bose D., Esteve-Romero J., Rapid and sensitive determination of nicotine in formulations and biological fluid using micellar liquid chromatography with electrochemical detection, J. Chromatogr. B., 2010, 878, 2397-2402. Google Scholar

  • [65] Walash M.I., Sharaf El-Din M., El-Enany N., Eid M., Shalan Sh., Micellar liquid chromatographic method for the simultaneous determination of norfloxacin and tinidazole in pharmaceutical dosage forms and human plasma, Lat. Am. J. Pharm., 2011, 30, 25-32. Google Scholar

  • [66] Agrawal N., Marco-Peiró S., Esteve-Romero J., Durgbanshi A., Bose D., Peris-Vicente J., Carda-Broch S., Determination of paroxetine in blood and urine using micellar liquid chromatography with electrochemical detection, J. Chromatogr. Sci., 2014, 52, 1217-1223. CrossrefGoogle Scholar

  • [67] Rambla-Alegre M., Martí-Centelles R., Esteve-Romero J., Carda-Broch S., Application of a liquid chromatographic procedure for the analysis of penicillin antibiotics in biological fluids and pharmaceutical formulations using sodium dodecyl sulphate/propanol mobile phases and direct injection, J. Chromatogr. A., 2011, 1218, 4972-4981. CrossrefGoogle Scholar

  • [68] Nakao R., Amini N., Halldin C., Simultaneous determination of protein-free and total positron emission tomography radioligand concentrations in plasma using high-performance frontal analysis followed by mixed micellar liquid chromatography: application to [11C] PBR28 in human plasma, Anal. Chem., 2013, 85, 8728-8734. CrossrefGoogle Scholar

  • [69] Nakao R., Halldin C., Improved radiometabolite analysis procedure for positron emission tomography (PET) radioligands using a monolithic column coupled with direct injection micellar/high submicellar liquid chromatography, Talanta, 2013, 113, 130-134. Google Scholar

  • [70] Nakao R., Schou M., Halldin C., Direct plasma metabolite analysis of positron emission tomography radioligands by micellar liquid chromatography with radiometric detection, Anal. Chem., 2012, 84, 3222-3230. CrossrefGoogle Scholar

  • [71] Nakao R., Halldin C., “Mixed” anionic and non-ionic micellar liquid chromatography for high-speed radiometabolite analysis of positron emission tomography radioligands, J. Chromatogr. A., 2013, 1281, 54-59. Google Scholar

  • [72] Sharaf El-Din M., Eid M., Talaat W., Micellar liquid chromatographic determination of ribavirin, silybin, interferon alpha 2a, lamivudine, and ursodeoxycholic acid in dosage forms and biological fluids, J. Liq. Chromatogr Related Technol., 2014, 37, 1785-1804. Google Scholar

  • [73] Rizk M., Toubar S.S., El-Alamin M.M.A., Azab M.M.M., Micellar liquid chromatographic determination of sertaconazole and terconazole in bulk, pharmaceutical dosage forms and spiked human plasma, Bull. Fac. Pharm. Cairo University, 2014, 52, 155-164. Google Scholar

  • [74] Peris-Vicente J., Ochoa-Aranda E., Bose D., Esteve-Romero J., Determination of tamoxifen and its main metabolites in plasma samples from breast cancer patients by micellar liquid chromatography, Talanta, 2015, 131, 535-540. Google Scholar

  • [75] Aranda E.O., Esteve-Romero J., Rambla-Alegre M., Peris-Vicente J., Bose D., Development of a methodology to quantify tamoxifen and endoxifen in breast cancer patients by micellar liquid chromatography and validation according to the ICH guidelines, Talanta, 2011, 84, 314-318. CrossrefGoogle Scholar

  • [76] Esteve-Romero J., Ochoa-Aranda E., Bose D., Rambla-Alegre M., Peris-Vicente J., Martinavarro-Domínguez A., Tamoxifen monitoring studies in breast cancer patients by micellar liquid chromatography, Anal. Bioanal. Chem., 2010, 397, 1557-1561. Google Scholar

  • [77] Rizk M., Toubar S.S., El-Alamin M.M.A., Azab M.M.M., Micellar high performance liquid chromatographic determination of tinidazole in combination with ciprofloxacin or norfloxacin in bulk, pharmaceutical dosage forms and in spiked human plasma, Eur. J. Chem., 2014, 5, 439-445. CrossrefGoogle Scholar

  • [78] Shaalan Sh., Nasr J.J., Belal F., Determination of tizoxanide, the active metabolite of nitazoxanide, by micellar liquid chromatography using a monolithic column. application to pharmacokinetic studies, Anal. Methods, 2014, 6, 8682-8689. CrossrefGoogle Scholar

  • [79] Raviolo M.A., Esteve-Romero J., Briñón M.C., Stability-indicating micellar liquid chromatography method for three novel derivatives of zidovudine in aqueous and simulated gastric and intestinal fluids matrices, J. Chromatogr. A., 2011, 1218, 2540-2545. CrossrefGoogle Scholar

  • [80] El-Shaheny R.N., Alattas A., Nasr J.J., El-Enany N., Belal F., Simultaneous determination of zopiclone and its degradation product and main impurity (2-amino-5-chloropyridine) by micellar liquid chromatography with time-programmed fluorescence detection: preliminary investigation for biological monitoring, J. Chromatogr. B., 2012, 907, 49-55. Google Scholar

  • [81] Ibrahim F.A., Nasr J.J., Direct determination of ampicillin and amoxicillin residues in food samples after aqueous SDS extraction by micellar liquid chromatography with UV detection, Anal. Methods, 2014, 6, 1523-1529. CrossrefGoogle Scholar

  • [82] Nasr J.J., Shalan Sh., Belal F., Determination of carbadox and olaquindox residues in chicken muscles, chicken Liver, bovine meat, liver and milk by MLC with UV detection: Application to baby formulae, Chromatographia, 2013, 76, 523-528. CrossrefGoogle Scholar

  • [83] Nasr J.J., Shaalan Sh., Belal F., Determination of ethopabate residues in chicken muscles, liver, and eggs after aqueous SDS extraction by micellar liquid chromatography with fluorescence detection with application to baby food, Food Anal. Methods, 2014, 6, 1522-1528. Google Scholar

  • [84] Belal F., Abd El-Razeq S.A., Fouad M.M., Fouad F.A., Micellar high performance liquid chromatographic determination of flunixin meglumine in bulk, pharmaceutical dosage forms, bovine liver and kidney, Anal. Chem. Res., 2015, 3, 63-69. CrossrefGoogle Scholar

  • [85] Rambla-Alegre M., Marco-Peiró S., Peris-Vicente J., Beltrán-Martinavarro B., Collado-Sánchez M.A., Carda-Broch S., Esteve-Romero J., Analytical determination of hydroxytyrosol in olive extract samples by micellar liquid chromatography, Food Chem., 2011, 129, 614–618. Google Scholar

  • [86] Subhra H., Prakash D.N., Abhilasha D., Esteve-Romero J., Devasish B., Simultaneous determination of psychoactive compounds in foodstuffs using micellar liquid chromatography with direct injection, J. AOAC. Int., 2014, 97, 409-414. CrossrefGoogle Scholar

  • [87] Rambla-Alegre M., Peris-Vicente J., Marco-Peiró S., Beltrán-Martinavarro B., Esteve-Romero J., Development of an analytical methodology to quantify melamine in milk using micellar liquid chromatography and validation according to EU Regulation 2002/654/EC, Talanta, 2010, 81, 894-900. Google Scholar

  • [88] Beltrán-Martinavarro B., Peris-Vicente J., Marco-Peiró S., Esteve-Romero J., Rambla-Alegre M., Carda-Broch S., Use of micellar mobile phases for the chromatographic determination of melamine in dietetic supplements, Analyst, 2012, 137, 269-274. Google Scholar

  • [89] Beltrán-Martinavarro B., Peris-Vicente J., Carda-Broch S., Esteve-Romero J., Development and validation of a micellar liquid chromatography-based method to quantify melamine in swine kidney, Food Control, 2014, 46, 168-173. CrossrefGoogle Scholar

  • [90] Patyra E., Kowalczyk E., Kwiatek K., Development and validation method for the determination of selected tetracyclines in animal medicated feeding stuffs with the use of micellar liquid chromatography, Anal. Bioanal. Chem., 2013, 405, 6799-806. Google Scholar

  • [91] Chin-Chen M.L., Bose D., Esteve-Romero J., Peris-Vicente J., Rambla-Alegre M., Carda-Broch S., Determination of putrescine and tyramine in fish by micellar liquid chromatography with UV detection using direct injection, Open Anal. Chem. J. 2011, 5, 22-26. Google Scholar

  • [92] Hadjmohammadi MR., Nazari S.S., Separation optimization of quercetin, hesperetin and chrysin in honey by micellar liquid chromatography and experimental design, J. Sep. Sci., 2010, 33, 3144-3151. CrossrefGoogle Scholar

  • [93] Rambla-Alegre M., Collado-Sánchez M.A., Esteve-Romero J., Carda-Broch S., Quinolones control in milk and eggs samples by liquid chromatography using a surfactant-mediated mobile phase, Anal. Bioanal. Chem., 2011, 400, 1303-1313. Google Scholar

  • [94] Chin-Chen M.L., Rambla-Alegre M., Carda-Broch S., Esteve-Romero J., Peris-Vicente J., Micellar liquid chromatography determination of spermine in fish sauce after derivatization with 3,5-dinitrobenzoyl chloride, Chromatogr. Res. Int., 2012, http://dx.doi.org/10.1155/2012/421909. Google Scholar

  • [95] Nasr J.J., Shalan Sh., Belal F., Simultaneous determination of tylosin and josamycin residues in muscles, liver, eggs and milk by MLC with a monolithic column and time-programmed UV detection: application to baby food and formulae, Chem. Cent. J., 2014, 8, http://journal.chemistrycentral.com/content/8/1/37. Google Scholar

  • [96] Mourya S.K., Bose D., Durgbanshi A., Esteve-Romero J., Carda-Broch S., Determination of some banned aromatic amines in waste water using micellar liquid chromatography, Anal. Methods, 2011, 3, 2032-2040. CrossrefGoogle Scholar

  • [97] Cheng S.H., Kwan C.C., Lo C.C., Simultaneous analysis of blasticidin S and kasugamycin with micellar liquid chromatography, J. Food. Drug Anal., 2011, 19, 452-456. Google Scholar

  • [98] Chin-Chen M.L., Rambla-Alegre M., Durgbanshi A., Bose D., Mourya S.K., Esteve-Romero J., Carda-Broch S., Micellar liquid chromatographic determination of carbaryl and 1-naphthol in water, soil, and vegetables, Int. J. Anal. Chem., 2012, http://dx.doi.org/10.1155/2012/809513. CrossrefGoogle Scholar

  • [99] Beltrán-Martinavarro B., Peris-Vicente J., Rambla-Alegre M., Marco-Peiró S., Esteve-Romero J., Carda-Broch S., Quantification of melamine in drinking water and wastewater by micellar liquid chromatography, J. AOAC. Int., 2013, 96, 870-874. CrossrefGoogle Scholar

  • [100] Thogchai W., Liawruangrath B., Micellar liquid chromatographic determination of arbutin and hydroquinone in medicinal plant extracts and commercial cosmetic products, Int. J. Cosmet. Sci., 2013, 35, 257-263. CrossrefGoogle Scholar

  • [101] Mourya S.K., Dubey S., Durgabanshi A., Shukla S.K., Esteve-Romero J., Bose D., Determination of disulfiram by micellar liquid chromatography in illicit preparations, J. AOAC. Int., 2011, 94, 1082-1088. Google Scholar

  • [102] Dong Y.M., An Q., Lu N.W., Li N., Development of a micellar HPLC method for simultaneous determination of ephedrine, pseudoephedrine, and methylephedrine in ephedra herb and traditional Chinese medicinal preparations, Acta Chromatogr., 2014, 1, 1-18. Google Scholar

  • [103] Mishra S.D., Bose D., Shukla S.K., Durgabanshi A., Esteve-Romero J., Monitoring strychnine and brucine in biochemical samples using direct injection micellar liquid chromatography, Anal. Methods, 2013, 5, 1747-1754. CrossrefGoogle Scholar

About the article

Received: 2014-11-12

Accepted: 2015-03-01

Published Online: 2015-04-28


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0101.

Export Citation

© 2015 Rania N. El-Shaheny, Mahmoud H. El-Maghrabey, Fathalla F. Belal. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Waqar Azeem, Peter John, Muhammad Faizan Nazar, Islam Ullah Khan, Atif Riaz, and Shahzad Sharif
Journal of Molecular Liquids, 2017
[3]
Amir M. Ramezani, Saeed Yousefinejad, Mohammad Nazifi, and Ghodratollah Absalan
Journal of Molecular Liquids, 2017, Volume 242, Page 1058
[4]
Ana I. Olives, Víctor González-Ruiz, and M. Antonia Martín
ACS Sustainable Chemistry & Engineering, 2017, Volume 5, Number 7, Page 5618
[5]
Fawzia Ibrahim, Asmaa Kamal El-Deen, Samah Abo El Abass, and Kuniyoshi Shimizu
Journal of Food and Drug Analysis, 2017, Volume 25, Number 3, Page 741
[6]
Fawzia Ibrahim, Mohie K. Sharaf El-Din, Asmaa Kamal El-Deen, and Kuniyoshi Shimizu
Journal of Chromatographic Science, 2017, Volume 55, Number 1, Page 23
[7]
Laura J. Waters, Dina S. Shokry, and Gareth M.B. Parkes
Biomedical Chromatography, 2016, Volume 30, Number 10, Page 1618
[9]
María José Ruiz-Ángel, Samuel Carda-Broch, and María Celia García-Álvarez-Coque
Bioanalysis, 2016, Volume 8, Number 12, Page 1225
[10]
[11]
E. Peris-García, M. T. Ubeda-Torres, M. J. Ruiz-Angel, and M. C. García-Alvarez-Coque
Anal. Methods, 2016, Volume 8, Number 19, Page 3941

Comments (0)

Please log in or register to comment.
Log in