Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

Volume 13 (2015)

Determination of micelle aggregation numbers of alkyltrimethylammonium bromide and sodium dodecyl sulfate surfactants using time-resolved fluorescence quenching

Martin Pisárčik
  • Corresponding author
  • Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, SK-83232 Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ferdinand Devínsky
  • Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, SK-83232 Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matúš Pupák
  • Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, SK-83232 Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-27 | DOI: https://doi.org/10.1515/chem-2015-0103

Abstract

The time-resolved fluorescence quenching method was applied to determine the micelle aggregation number of cationic single-chain surfactants dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB) and anionic surfactant sodium dodecyl sulfate (SDS). The concentration dependence of micelle aggregation number was found to be linear for all investigated surfactants in the concentration range 2‒15 × the value of critical micelle concentration of the respective surfactant. The values of micelle aggregation number were found in the range 30‒77. Different trends in the linear concentration dependence of micelle aggregation number were observed for cationic surfactants and for the anionic surfactant SDS. A small slope value was found for cationic surfactants, while the SDS micelle aggregation number concentration dependence showed significantly a larger slope value. The aggregation number increase with the increasing SDS concentration results in the micellar growth. Results from a simple analysis based on computer models of cationic and anionic surfactant molecules with dodecyl chains supports, the formation of intramicellar hydrogen bonding between surfactant molecules in SDS micelle shell.

Graphical Abstract

Keywords : micelle aggregation number; fluorescence quenching; sodium dodecyl sulfate; hydrogen bonding

References

  • [1] Floriano M.A., Caponetti E., Panagiotopoulos A., Micellization in Model Surfactant Systems, Langmuir, 1999, 15, 3143-3151. CrossrefGoogle Scholar

  • [2] Rodriguez-Guadarrama L.A., Talsania S.K., Mohanty K.K., Rajagopalan R., Thermodynamics of Aggregation of Amphiphiles in Solution from Lattice Monte Carlo Simulations, Langmuir, 1999, 15, 437-446. CrossrefGoogle Scholar

  • [3] Watanabe K., Ferrario M., Klein M, Molecular dynamics study of a sodium octanoate micelle in aqueous solution, J. Phys. Chem., 1988, 92, 819-821. CrossrefGoogle Scholar

  • [4] Shelley J., Shelley M., Computer simulation of surfactant solutions, Curr. Opin. Colloid Interface Sci., 2000, 5, 101-110. CrossrefGoogle Scholar

  • [5] Jonsson B., Edholm O., Teleman O., Molecular dynamics simulations of a sodium octanoate micelle in aqueous solution, J. Chem. Phys., 1986, 85, 2259-2271. Google Scholar

  • [6] Törnblom M., Henriksson U., Ginley M., A Field Dependent 2H Nuclear Magnetic Relaxation Study of the Aggregation Behavior in Micellar Solutions of CTAB and SDS, J. Phys. Chem., 1994, 98, 7041-7051. CrossrefGoogle Scholar

  • [7] Gharibi H., Sohrabi B., Javadian S., Hashemianzadeh M., Study of the electrostatic and steric contributions to the free energy of ionic/nonionic mixed micellization, Colloids Surf. A, 2004, 244, 187-196. Google Scholar

  • [8] Griffiths P.C., Paul A., Heenan R.K., Penfold J., Ranganathan R., Bales B.L., Role of Counterion Concentration in Determining Micelle Aggregation: Evaluation of the Combination of Constraints from Small-Angle Neutron Scattering, Electron Paramagnetic Resonance, and Time-Resolved Fluorescence Quenching, J. Phys. Chem. B, 2004, 108, 3810-3816. CrossrefGoogle Scholar

  • [9] Peyre V., Bouguerra S., Testard F., Micellization of dodecyltrimethylammonium bromide in water-dimethylsulfoxide mixtures: A multi-lenght scale approach in model system, J. Colloid Interface Sci., 2013, 389, 164-174. Google Scholar

  • [10] Joshi J.V., Aswal V.K., Goyal P.S., Small angle neutron scattering study of mixed micelles of oppositely charged surfactants. J. Phys., 2008, 71, 1039-1043. Google Scholar

  • [11] Reiss-Husson F., Luzzati V., The Structure of the Micellar Solutions of Some Amphiphilic Compounds in Pure Water as Determined by Absolute Small-Angle X-Ray Scattering Techniques, J. Phys. Chem., 1964, 68, 3504-3511. Google Scholar

  • [12] Lebedeva N., Zana R., Bales B.L., A Reinterpretation of the Hydration of Micelles of Dodecyltrimethylammonium Bromide and Chloride in Aqueous Solution, J. Phys. Chem. B, 2006, 110, 9800-9801. CrossrefGoogle Scholar

  • [13] Bales B.L., Zana R., Characterization of Micelles of Quaternary Ammonium Surfactants as Reaction Media I: Dodeclytrimethylammonium Bromide and Chloride, J. Phys. Chem. B, 2002, 106, 1926-1939. Google Scholar

  • [14] Bales B.L., A Definition of the Degree of Ionization of a Micelle Based on Its Aggregation Number, J. Phys. Chem. B, 2001, 105, 6798-6804. CrossrefGoogle Scholar

  • [15] Bales B.L., Messina L., Vidal A., Peric M., Nascimento O.R., Precision Relative Aggregation Number Determinations of SDS Micelles Using a Spin Probe. A Model of Micelle Surface Hydration, J. Phys. Chem. B, 1998, 102, 10347-10358. CrossrefGoogle Scholar

  • [16] Lebedeva N., Ranganathan R., Bales B.L., Location of Spectroscopic Probes in Self-Aggregating Assemblies. II. The Location of Pyrene and Other Probes in Sodium Dodecyl Sulfate Micelles, J. Phys. Chem. B, 2007, 111, 5781-5793. CrossrefGoogle Scholar

  • [17] Imae T., Kamiya R., Ikeda S., Formation of spherical and rod-like micelles of cetyltrimethylammonium bromide in aqueous NaBr solutions, J. Colloid Interface Sci., 1985, 108, 215-225. CrossrefGoogle Scholar

  • [18] Ozeki S., Ikeda S., The sphere-rod transition of micelles of dodecyldimethylammonium bromide in aqueous NaBr solutions, and the effects of counterion binding on the micelle size, shape and structure, Colloid Polym. Sci., 1984, 262, 409- 417. Google Scholar

  • [19] Ikeda S., Ozeki S., Tsunoda M.A., Micelle molecular weight of dodecyldimethylammonium chloride in aqueous solutions, and the transition of micelle shape in concentrated NaCl solutions, J. Colloid Interface Sci., 1980, 73, 27-37. CrossrefGoogle Scholar

  • [20] Fujio K., Ikeda S., Size of spherical micelles of dodecylpyridinium bromide in aqueous NaBr solutions, Langmuir, 1991, 7, 2899- 2903. CrossrefGoogle Scholar

  • [21] Imae T., Ikeda S., Sphere-rod transition of micelles of tetradecyltrimethylammonium halides in aqueous sodium halide solutions and flexibility and entanglement of long rodlike micelles, J. Phys. Chem., 1986, 90, 5216-5223. CrossrefGoogle Scholar

  • [22] Hayashi S., Ikeda S., Micelle size and shape of sodium dodecyl sulfate in concentrated sodium chloride solutions, J. Phys. Chem., 1980, 84, 744-751. CrossrefGoogle Scholar

  • [23] Ikeda S., Hayashi S., Imae T., Rodlike micelles of sodium dodecyl sulfate in concentrated sodium halide solutions, J. Phys. Chem., 1981, 85, 106-112. CrossrefGoogle Scholar

  • [24] Cabane B., Small Angle Scattering Methods, In: Zana R. Ed., Surfactant Solutions, Dekker, New York, 1987. Google Scholar

  • [25] Yun F., Xue-Feng L., Young-Mei X., Yang Y., Kun C., Jung-Mok S., et al., Determination of Critical Micellar Aggregation Numbers by Steady state Fluorescence Probe Method, Acta Phys.-Chim. Sin., 2001, 17, 828-831, (in Chinese). Google Scholar

  • [26] Gracia K., Turner D., Palepu R., Thermodynamic properties of micellization of sodium dodecyl sulfate in binary mixtures of ethylene glycol with water, Can. J. Chem., 1996, 74, 1616-1625. CrossrefGoogle Scholar

  • [27] Jing-Yuan C., Guo-Ting W., Jin-Zhu L., Investigation on the determination of micellar aggregation number by steady-state fluorescence quenching method, Acta Phys.-Chim. Sin., 1993, 9, 461-465. (In Chinese). Google Scholar

  • [28] Zana R., Luminiscence Probing Methods, In: Zana R. Ed., Surfactant Solutions, Dekker, New York, 1987. Google Scholar

  • [29] Turro N.J., Yekta A., Luminiscent Probes for Detergent Solutions: A Simple Procedure for Determination of the Mean Aggregation Number of Micelles, J. Am. Chem. Soc., 1978, 100, 5951-5952. CrossrefGoogle Scholar

  • [30] Herrington K.L., Kaler E.W., Miller D.D., Zasadzinski J.A., Chiruvolu S., Phase Behavior of Aqueous Mixtures of Dodecyltrimethylammonium Bromide (DTAB), J. Phys. Chem., 1993, 97, 13792-13802. Google Scholar

  • [31] Feitosa E., Brazolin M.R.S., Naal R.M.Z.G., Freire de Morais Del Lama M.P., Lopes J.R., Loh W., Vasilescu M., Structural organization of cetyltrimethylammonium sulfate in aqueous solution: The effect of Na2SO4, J. Colloid Interface Sci., 2006, 299, 883-889. Google Scholar

  • [32] Kuperkar K., Abezgaus L., Prasad K., Bahadur P., Formation and Growth of Micelles in Dilute Aqueous CTAB Solutions in the Presence of NaNO3 and NaClO3, J. Surfact. Deterg., 2010, 13, 293-303. Google Scholar

  • [33] Ranganathan R., Tran L., Bales B.L., Surfactant- and Salt- Induced Growth of Normal Sodium Alkyl Sulfate Micelles Well above Their Critical Micelle Concentrations, J. Phys. Chem. B, 2000, 104, 2260-2264. Google Scholar

  • [34] Bales B.L., Almgren M., Fluorescence Quenching of Pyrene by Copper(II) in Sodium Dodecyl Sulfate Micelles. Effect of Micelle Size As Controlled By Surfactant Concentration. J. Phys. Chem., 1995, 99, 15153-15162. CrossrefGoogle Scholar

  • [35] Friedrich L.C., Silva V.O., Moreira Jr. P.F., Tcancenco C.M., Quina F.H., Time-Resolved Fluorescence Quenching Studies of Sodium Lauryl Ehter Sulfate Micelles, J. Braz. Chem. Soc., 2013, 24, 241- 245. CrossrefGoogle Scholar

  • [36] Alargova R.G., Kochijansky I.I., Sierra M.L., Zana R., Micelle Aggregation Numbers of Surfactants in Aqueous Solutions: A Comparison between the Results from Steady-State and Time- Resolved Fluorescence Quenching, Langmuir, 1998, 14, 5412- 5418. CrossrefGoogle Scholar

  • [37] Kalyanasundaram K., Thomas J.K., Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems, J. Am. Chem. Soc., 1977, 99, 2039-2044. CrossrefGoogle Scholar

  • [38] Dong D.C., Winnik M.A., The Py scale of solvent polarities, Can. J. Chem., 1984, 62, 2560-2565. CrossrefGoogle Scholar

  • [39] Berr S.S., Solvent Isotope Effects on Alkyltrimethylammonium Bromide Micelles as a Function of Alkyl Chain Length, J. Phys. Chem., 1987, 91, 4760-4765. CrossrefGoogle Scholar

  • [40] Berr S., Jones R.R.M., Johnson Jr. J.S., Effect of counterion on the size and charge of alkyltrimethylammonium halide micelles as a function of chain length and concentration as determined by small-angle neutron scattering, J. Phys. Chem., 1992, 96, 5611- 5614. Google Scholar

  • [41] Thalberg K., van Stam J., Lindblad C., Almgren M., Lindman B.J., Time-resolved fluorescence and self-diffusion studies in systems of a cationic surfactant and an anionic polyelectrolyte, J. Phys. Chem., 1991, 95, 8975-8982. Google Scholar

  • [42] Danino D., Talmon Y., Zana R., Alkanediyl-a,wbis( dimethylalkylammonium bromide) Surfactants (Dimeric Surfactants). 5. Aggregation and Microstructure in Aqueous Solutions, Langmuir, 1995, 11, 1448-1456. CrossrefGoogle Scholar

  • [43] Gragson D.E., Richmond G.L., Potential Dependent Alignment and Hydrogen Bonding of Interfacial Water Molecules at Charged Air/Water and Oil/Water Interfaces, J. Am. Chem. Soc., 1998, 120, 366-375. Google Scholar

  • [44] Bruce C.D., Berkowitz M.L., Perera L., Forbes M.D.E., Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water: Micellar Structural Characteristics and Counterion Distribution, J. Phys. Chem. B, 2002, 106, 3788-3793. CrossrefGoogle Scholar

  • [45] Bruce C.D., Senapati S., Berkowitz M.L., Perera L., Forbes M.D.E., Molecular Dynamics Simulations of Sodium Dodecyl Sulfate Micelle in Water: The Behavior of Water, J. Phys. Chem. B, 2002, 106, 10902-10907. CrossrefGoogle Scholar

  • [46] Sammalkorpi M., Karttunen M., Haataja M., Ionic Surfactant Aggregates In Saline Solutions: Sodium Dodecyl Sulfate (SDS) in the Presence of Excess Sodium Chloride (NaCl) or Calcium Chloride (CaCl2), J. Phys. Chem. B, 2009, 113, 5863-5870. CrossrefGoogle Scholar

  • [47] Yoshii N., Okazaki S., A molecular dynamics study of structure and dynamics of surfactant molecules in SDS spherical micelle, Cond. Matt. Phys., 2007, 10, 573-578. Google Scholar

  • [48] Tummala N.R., Striolo A., Role of Counterion Condensation in the Self-Assembly of SDS at the Water-Graphite Interface, J. Phys. Chem. B, 2008, 112, 1987-2000. CrossrefGoogle Scholar

  • [49] Schweighofer K.J., Essmann U., Berkowitz M., Simulation of Sodium Dodecyl Sulfate at the Water-Vapor and Water-Carbon Tetrachloride Interfaces at Low Surface Coverage, J. Phys. Chem. B, 1997, 101, 3793-3799. CrossrefGoogle Scholar

  • [50] Tang X., Koenig P.H., Larson R.G., Molecular Dynamics Simulations of Sodium Dodecyl Sulfate Micelles in Water—The Effect of the Force Field, J. Phys. Chem. B, 2014, 118, 3864-3880. CrossrefGoogle Scholar

  • [51] Nakagaki M., Yokohama S., Acid catalyzed hydrolysis of sodium dodecyl sulfate., J. Pharm. Sci., 1985, 74, 1047-1052. CrossrefGoogle Scholar

  • [52] Rosen M.J., Surfactants and Interfacial Phenomena, 3rd ed., J. Wiley & Sons New York, 2004. Google Scholar

  • [53] Bethell D., Fessey R.E., Namwindwa E., Roberts D.W., The hydrolysis of C12 primary alkyl sulfates in concentrated aqueous solutions. Part 1. General features, kinetic form and mode of catalysis in sodium dodecyl sulfate hydrolysis, J. Chem. Soc. Perkin Trans., 2001, 2, 1489-1495. Google Scholar

About the article

Received: 2014-09-27

Accepted: 2015-03-19

Published Online: 2015-05-27


Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0103.

Export Citation

© 2015 Martin Pisárčik et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Anatoly I. Rusanov
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018
[2]
Letícia F. Rasteiro, Luiz H. Vieira, Celso V. Santilli, and Leandro Martins
RSC Advances, 2018, Volume 8, Number 22, Page 11975
[4]
Vladimir S. Farafonov, Alexander V. Lebed, and Nikolay O. Mchedlov-Petrossyan
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017
[5]
Guillermo González-Rubio, Pablo Díaz-Núñez, Antonio Rivera, Alejandro Prada, Gloria Tardajos, Jesús González-Izquierdo, Luis Bañares, Pablo Llombart, Luis G. Macdowell, Mauricio Alcolea Palafox, Luis M. Liz-Marzán, Ovidio Peña-Rodríguez, and Andrés Guerrero-Martínez
Science, 2017, Volume 358, Number 6363, Page 640
[9]
Yu. V. Shulevich, M. V. Motyakin, A. M. Wasserman, Yu. A. Zakharova, E. G. Dukhanina, A. V. Navrotskii, and I. A. Novakov
Colloid Journal, 2016, Volume 78, Number 6, Page 808

Comments (0)

Please log in or register to comment.
Log in