Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2017: 165.27

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

A review of recent developments and trends in the QuEChERS sample preparation approach

Tomasz Rejczak
  • Medical University of Lublin, Faculty of Pharmacy with Medical Analytics Division, Chair of Chemistry, Department of Physical Chemistry, 4A Chodźki Street, 20-093 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomasz Tuzimski
  • Corresponding author
  • Medical University of Lublin, Faculty of Pharmacy with Medical Analytics Division, Chair of Chemistry, Department of Physical Chemistry, 4A Chodźki Street, 20-093 Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-18 | DOI: https://doi.org/10.1515/chem-2015-0109


A comprehensive review is presented on the recent developments and trends in the QuEChERS (quick, easy, cheap, effective, rugged, and safe) sample preparation approach. This technique involves liquid-liquid partitioning using acetonitrile and purifying the extract using dispersive solid-phase extraction (d-SPE). Originally, the QuEChERS was introduced for pesticides residues analysis in high moisture fruits and vegetables, but more recently it is gaining significant popularity in the analysis of broad spectrum of analytes in huge variety of samples. The wide range of the technique applications is possible due to introducing various modifications based on the use of different extraction solvent and salt formulation and buffer additions for salting-out partitioning step and the application of various d-SPE sorbents for clean-up step. Therefore, the QuEChERS approach is useful for analysis of, among others pesticides, veterinary drugs and other pharmaceuticals, mycotoxins, polycyclic aromatic hydrocarbons (PAHs), dyes, acrylamide, synthetic musks and UV filters, bisphenols, polybrominated diphenyl ethers and other flame retardants, endocrine disruptors, and other chemical compounds. Thanks to the QuEChERS approach, high-throughput multiresidue methods operate in a routine contaminant control of food products, feedstuff, and environmental samples.

Graphical Abstract

Keywords : QuEChERS; d-SPE sorbents; matrix effect; food control; LC-MS (MS/MS) or GC-MS (MS/MS)


  • [1] Anastassiades M., Lehotay S.J., et al., Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) approach for the determination of pesticide residues, European Pesticide Residues Workshop (EWPR), Rome, Book of Abstracts, 2002. Google Scholar

  • [2] Anastassiades M., Lehotay S.J., Stajnbaher D., Schenck F.J., Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce, J. AOAC Int., 2003, 86(2), 412-31, PMID: 12723926. Google Scholar

  • [3] Lehotay S.J., Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) approach for determining pesticide residues (Chapter 6), In: Vidal Martinez J.L., Garrido Frenich A. (Eds.), pesticide analysis in methods in biotechnology, Humana Press, USA, 2004. Google Scholar

  • [4] Majors R.E., Sample preparation fundamentals for chromatography, Agilent Technologies, Mississauga, Canada, 2013. Google Scholar

  • [5] Schenck F.J., Hobbs J.E., Evaluation of the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) approach to pesticide residue analysis, Bull. Environ. Contam. Toxicol., 2004, 73, 24-30, DOI: 10.1007/s00128-004-0388-y. CrossrefGoogle Scholar

  • [6] Bruzzoniti M.C., Checchini L., De Carlo R.M., Orlandini S., Rivoira L., Del Bubba M., QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: a critical review, Anal. Bioanal. Chem. 406, 4089-4116 (2014) DOI 10.1007/s00216-014-7798-4 CrossrefGoogle Scholar

  • [7] Lehotay S.J., Anastassiades M., Majors R.E., The QuEChERS Revolution, Chromatography Online, 2010, September 1. Google Scholar

  • [8] Schenck F.J, Callery P., Gannett P.M., Daft J.R., Lehotay S.J., Comparison of magnesium sulfate and sodium sulfate for removal of water from pesticide extracts of foods, J. AOAC Int., 2002, 85(5), 1177-1180, PMID: 12374418. Google Scholar

  • [9] Majors R.E., Modern techniques for the extraction of solid materials - an update, LC–GC Eur., 2007, 20 (2), 574-576. Google Scholar

  • [10] Anastassiades M., CRL-SRM 1st Joint CRL Workshop, Stuttgart, 2006, http://www.eurl-pesticides.eu/library/docs/srm/1stws2006_lecture_anastassiades_quechers.pdf Google Scholar

  • [11] Majors R.E., QuEChERS - a new sample preparation technique for multiresidue analysis of pesticides in foods and agricultural samples, LCGC North America, 2007, 25 (5), http://www.pharmtech.com/pharmtech/article/articleDetail.jsp?id=429505. Google Scholar

  • [12] González-Curbelo M.Á., Lehotay S.J., Hernández-Borges J., Rodríguez-Delgado M.Á., Use of ammonium formate in QuEChERS for high-throughput analysis of pesticides in food by fast, low-pressure gas chromatography and liquid chromatography tandem mass spectrometry, J. Chromatogr. A, 2014, 1358, 75-84, http://dx.doi.org/10.1016/j.chroma.2014.06.104. CrossrefGoogle Scholar

  • [13] http://quechers.cvua-stuttgart.de/pdf/reality.pdf Google Scholar

  • [14] Żwir-Ferenc A., Biziuk M., Solid Phase Extraction Technique – Trends, Opportunities and Applications, Polish J. of Environ. Stud., 2006, 15(5), 677-690, http://www.pjoes.com/pdf/15.5/677-690.pdf. Google Scholar

  • [15] UCT QuEChERS informational booklet http://www.pmsep.com.au/common/downloads/quechers-booklet-2011-4-19-11.pdf Google Scholar

  • [16] Payá P., Anastassiades M., Mack D., Sigalova I., Tasdelen B., Oliva J., Barba A., Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection, Anal. Bioanal. Chem., 2007, 389, 1697-1714, DOI 10.1007/s00216-007-1610-7. CrossrefGoogle Scholar

  • [17] AOAC Official Method 2007.01 (2007) Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate, AOAC Int., Gaithersburg, USA. Google Scholar

  • [18] EN 15662:2008 (2008) Foods of Plant Origin−Determination of Pesticide Residues Using GC-MS and/or LC-MS/MS Following Acetonitrile Extraction and Partitioning and Cleanup by Dispersive SPE, QuEChERS Method, Brussels, Belgium. Google Scholar

  • [19] Lehotay S.J., de Kok A., et al., Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection, J. AOAC Int., 2005, 88(2), 595-614, PMID: 15859089. Google Scholar

  • [20] Lehotay S.J., Mastovská K., Lightfield A.R., Use of buffering and other means to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables, J. AOAC Int., 2005, 88(2), 615-629, PMID: 15859090. Google Scholar

  • [21] Anastassiades M., Scherbaum E., Tasdelen B., Stajnbaher D., Recent developments in QuEChERS methodology for pesticide multiresidue analysis, In: Ohkawa H., Miyagawa H., Lee P.W. (Eds.), Pesticide chemistry. Crop protection, public health, environmental safety, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007. Google Scholar

  • [22] CVUA Stuttgart 2011, http://quechers.cvua-stuttgart.de/pdf/acidicpesticides.pdf Google Scholar

  • [23] Lehotay S.J., Ae Son K., Kwon H., Koesukwiwat U., Fu W., Mastovská K., Hoh E., Leepipatpiboon N., Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables, J. Chromatogr. A, 2010, 1217, 2548-2560, doi:10.1016/j.chroma.2010.01.044. CrossrefGoogle Scholar

  • [24] CRL for Single Residue Methods 2007, http://www.crl-pesticides.eu/library/docs/cf/acidicpesticides_wheat_quechers.pdf Google Scholar

  • [25] CVUA Stuttgart 2011, http://quechers.cvua-stuttgart.de/pdf/acidlabileethoxy.pdf Google Scholar

  • [26] CVUA Stuttgart 2010, http://www.crl-pesticides.eu/library/docs/srm/meth_QuEChERSforChlorothalonil_2010.PDF Google Scholar

  • [27] CVUA Stuttgart 2010, http://www.crl-pesticides.eu/library/docs/srm/meth_PolarPesticides_CrlSrm.pdf Google Scholar

  • [28] Community Reference Laboratories for residues of Pesticides: http://www.crl-pesticides.eu/library/docs/srm/meth_NicotineMushrooms_CrlFvCrlSrm.pdf Google Scholar

  • [29] Lehotay S.J., Mastovská K., Yun S.J., Evaluation of two fast and easy methods for pesticide residue analysis in fatty food matrixes, J. AOAC Int., 2005, 88(2), 630-638, PMID:15859091. Google Scholar

  • [30] Kowalski J., Cochran J., QuEChERS: Beyond the basics, Restek Corporation, Bellefonte, USA, Separation Sciences: http://www.sepscience.com/Techniques/Sample-Prep/Articles/1863-/QuEChERS-Beyond-the-Basics. Google Scholar

  • [31] Misselwitz M., Lupo S., Kowalski J., Lake R., Cochran J., The Promise of Dilute-and-Shoot LC/MS/MS: feasibility of dilute-and-shoot injections for pesticide residue analysis in different food types using experimentally determined matrix effects Restek Corporation, 110 Benner Circle, Bellefonte, 2012, http://www.restek.com/pdfs/pcon2012_1040-5_dilute-shoot.pdf. Google Scholar

  • [32] Kwon H., Lehotay S.J., Geis-Asteggiante L., J. Chromatogr. A, Variability of matrix effects in liquid and gas chromatography–mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops 2012, 1270, 235-245, http://dx.doi.org/10.1016/j.chroma.2012.10.059. CrossrefGoogle Scholar

  • [33] Thiems A., Peschka M., Kittlaus S., Göttsche A., Anspach T., Comparison of three different QuEChERS approaches and the SweEt method for clean-up of spices and herbs, European Pesticide Residues Workshop (EWPR), Dublin, Book of Abstracts, 2014, https://keynote.conference-services.net/reports/template/onetextabstractkey.xml?xsl=template/onetextabstractkey.xsl&conferenceID=4020&abstractID=824209. Google Scholar

  • [34] Lozano A., Rajski Ł., Belmonte-Valles N., Uclés A., Uclés S., Mezcua M., Fernández-Alba A.R., Pesticide analysis in teas and chamomile by liquid chromatography and gas chromatography tandem mass spectrometry using a modified QuEChERS method: Validation and pilot survey in real samples, J. Chromatogr. A, 2012, 1268, 109-122, http://dx.doi.org/10.1016/j.chroma.2012.10.013. CrossrefGoogle Scholar

  • [35] Wang X., King W., ChloroFiltr: A novel sorbent for chlorophyll removal, LCGC Asia Pacific, 2013, 16 (1) March, 33 Google Scholar

  • [36] Sigma-Aldrich website: http://www.sigmaaldrich.com/video/analytical/quechers.html Google Scholar

  • [37] Sapozhnikova Y., Lehotay S.J., Multi-class, multi-residue analysis of pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and novel flame retardants in fish using fast, low-pressure gas chromatography–tandem mass spectrometry, Anal. Chim. Acta, 2013, 758, 80-92, http://dx.doi.org/10.1016/j.aca.2012.10.034. CrossrefGoogle Scholar

  • [38] Geis-Asteggiante L., Lehotay S.J., Lightfield A.R., Dutko T., Ng C., Bluhm L., Ruggedness testing and validation of a practical analytical method for >100 veterinary drug residues in bovine muscle by ultrahigh performance liquid chromatography–tandem mass spectrometry J. Chromatogr. A, 2012, 1258, 43-54, http://dx.doi.org/10.1016/j.chroma.2012.08.020. CrossrefGoogle Scholar

  • [39] Lozano A., Rajski Ł., Uclés S., Belmonte-Valles N., Mezcua M., Fernández-Alba A. R., Evaluation of zirconium dioxide-based sorbents to decrease the matrix effect in avocado and almond multiresidue pesticide analysis followed by gas chromatography tandem mass spectrometry, Talanta, 2014, 118, 68-83, http://dx.doi.org/10.1016/j.talanta.2013.09.053. CrossrefGoogle Scholar

  • [40] Tuzimski T., Rejczak T., Determination of pesticides in sunflower seeds by high-performance liquid chromatography coupled with a diode array detector, J. AOAC Int., 2014, 97(4), 1012-1020, DOI:10.5740/jaoacint.SGETuzimski. CrossrefGoogle Scholar

  • [41] Cerqueira M.B.R., Caldas S.S., Primel E.G., New sorbent in the dispersive solid phase extraction step of quick, easy, cheap, effective, rugged, and safe for the extraction of organic contaminants in drinking water treatment sludge, J. Chromatogr. A, 2014, 1336, 10-22, http://dx.doi.org/10.1016/j.chroma.2014.02.002. CrossrefGoogle Scholar

  • [42] Hou X., Lei S.-R., Qiu S.-T., Guo L.-A., Yi S.-G., Liu W., A multi-residue method for the determination of pesticides in tea using multi-walled carbon nanotubes as a dispersive solid phase extraction absorbent, Food Chem., 2014, 153, 121-129, http://dx.doi.org/10.1016/j.foodchem.2013.12.031. CrossrefGoogle Scholar

  • [43] Deng X., Guo Q., Chen X., Xue T., Wang H., Yao P., Rapid and effective sample clean-up based on magnetic multiwalled carbon nanotubes for the determination of pesticide residues in tea by gas chromatography–mass spectrometry, Food Chem., 2014, 145, 853-858, http://dx.doi.org/10.1016/j.foodchem.2013.08.137. CrossrefGoogle Scholar

  • [44] Guan W., Li Z., Zhang H., Hongb H., Rebeyev N., Ye Y., Ma Y., Amine modified graphene as reversed-dispersive solid phase extraction materials combined with liquid chromatography–tandem mass spectrometry for pesticide multi-residue analysis in oil crops, J. Chromatogr. A, 2013, 1286, 1-8, http://dx.doi.org/10.1016/j.chroma.2013.02.043. CrossrefGoogle Scholar

  • [45] Cherta L., Portolés T., Beltran J., Pitarch E.,. Mol J.G.J, Hernández F., Application of gas chromatography–(triple quadrupole) mass spectrometry with atmospheric pressure chemical ionization for the determination of multiclass pesticides in fruits and vegetables, J. Chromatogr. A, 2013, 1314, 224-240, http://dx.doi.org/10.1016/j.chroma.2013.09.029. CrossrefGoogle Scholar

  • [46] Hou X., Han M., Dai X.-H., Yang X.-F., Yi S., A multi-residue method for the determination of 124 pesticides in rice by modified QuEChERS extraction and gas chromatography–tandem mass spectrometry, Food Chem., 2013, 138, 1198–1205, http://dx.doi.org/10.1016/j.foodchem.2012.11.089. Google Scholar

  • [47] Anagnostopoulos C., Miliadis G.E., Development and validation of an easy multiresidue method for the determination of multiclass pesticide residues using GC–MS/MS and LC–MS/MS in olive oil and olives, Talanta, 2013, 112, 1-10, http://dx.doi.org/10.1016/j.talanta.2013.03.051. CrossrefGoogle Scholar

  • [48] Lee S. W., Choi J.-H., Cho S.-K., Yu H.-A, Abd El-Aty A.M., Shim J.-H., Development of a new QuEChERS method based on dry ice for the determination of 168 pesticides in paprika using tandem mass spectrometry, J. Chromatogr. A, 2011, 1218, 4366-4377, doi:10.1016/j.chroma.2011.05.021. CrossrefGoogle Scholar

  • [49] Walorczyk S., Validation and use of a QuEChERS-based gas chromatographic–tandem mass spectrometric method for multiresidue pesticide analysis in blackcurrants including studies of matrix effects and estimation of measurement uncertainty, Talanta, 2014, 120, 106-113, http://dx.doi.org/10.1016/j.talanta.2013.11.087. CrossrefGoogle Scholar

  • [50] Wang J., Cheung W., Leung D., Determination of pesticide residue transfer rates (percent) from dried tea leaves to brewed tea, J. Agric. Food Chem., 2014, 62, 966-983, dx.doi.org/10.1021/jf404123h. CrossrefGoogle Scholar

  • [51] Fan C.L., Chang Q.Y., Pang G.F., Li Z.Y., Kang J., Pan G.Q., Zheng S.Z., Wang W.W., Yao C.C., Ji X.X., High-throughput analytical techniques for determination of residues of 653 multiclass pesticides and chemical pollutants in tea, Part II: comparative study of extraction efficiencies of three sample preparation techniques, J. AOAC Int., 2013, 96(2), 432-440, PMID: 23767370. Google Scholar

  • [52] Chen X., Bian Z., Hou H., Yang F., Liu S., Tang G., Hu Q., Development and validation of a method for the determination of 159 pesticide residues in tobacco by gas chromatography−tandem mass spectrometry, J. Agric. Food Chem., 2013, 61, 5746-5757, dx.doi.org/10.1021/jf400887x. CrossrefGoogle Scholar

  • [53] Sapozhnikova Y., Evaluation of low-pressure gas chromatography−tandem mass spectrometry method for the analysis of >140 pesticides in fish, J. Agric. Food Chem., 2014, 62, 3684-3689, dx.doi.org/10.1021/jf404389e. Google Scholar

  • [54] Niell S., Cesio V., Hepperle J., Doerk D., Kirsch L., Kolberg D., Scherbaum E., Anastassiades M., Heinzen H., QuEChERS-based method for the multiresidue analysis of pesticides in beeswax by LC-MS/MS and GC×GC-TOF, J. Agric. Food Chem., 2014, 62, 367-3683, dx.doi.org/10.1021/jf405771t. CrossrefGoogle Scholar

  • [55] Pizzutti I.R., de Kok A., Cardoso C.D., Reichert B., de Kroon M., Wind W., Righi L.W., Caiel da Silva R., A multi-residue method for pesticides analysis in green coffee beans using gas chromatography–negative chemical ionization mass spectrometry in selective ion monitoring mode, J. Chromatogr. A, 2012, 1251, 16-26, http://dx.doi.org/10.1016/j.chroma.2012.06.041. CrossrefGoogle Scholar

  • [56] Rajski Ł., Lozano A., Uclésa A., Ferrer C., Fernández-Alba A. R., Determination of pesticide residues in high oil vegetal commodities by using various multi-residue methods and clean-ups followed by liquid chromatography tandem mass spectrometry, J. Chromatogr. A, 2013, 1304, 109-120, http://dx.doi.org/10.1016/j.chroma.2013.06.070. CrossrefGoogle Scholar

  • [57] Wang J., Cheung W., Chow W., Ultra-high performance liquid chromatography/ electrospray ionization-tandem mass spectrometry determination of 151 pesticides in soybeans and pulses, J. AOAC Int., 2013, 96(5), 1114-1133, PMID: 24282957. Google Scholar

  • [58] Martínez-Domíınguez G., Plaza-Bolaños P., Romero-González R., Garrido Frenich A., Multiresidue method for the fast determination of pesticides in nutraceutical products (Camellia sinensis) by GC coupled to triple quadrupole MS, J. Sep. Sci., 2014, 37, 665-674, DOI 10.1002/jssc.201301244. CrossrefGoogle Scholar

  • [59] Koesukwiwat U., Lehotay S.J., Leepipatpiboon N., Fast, low-pressure gas chromatography triple quadrupole tandem mass spectrometry for analysis of 150 pesticide residues in fruits and vegetables, J. Chromatogr. A, 2011, 1218, 7039-7050, doi:10.1016/j.chroma.2011.07.094. CrossrefGoogle Scholar

  • [60] Romero-González R., Plaza-Bolaños P., Limón-Garduza R.I., Martínez-Vidal J.L., Garrido Frenich A., QuEChERS approach for the determination of biopesticides in organic and nonorganic vegetables and fruits by ultra-performance liquid chromatography/tandem mass spectrometry, J. AOAC Int., 2014, 97(4), 1027-1033, DOI: 10.5740/jaoacint.SGERomeroGonzalez. CrossrefGoogle Scholar

  • [61] Arrebola-Liébanas F.J., Herrera Abdo M.A., Fernandez Moreno J.L., Martínez-Vidal J.L., Garrido Frenich A., Determination of quaternary ammonium compounds in oranges and cucumbers using QuEChERS extraction and ultra-performance liquid chromatography/tandem mass spectrometry, J. AOAC Int., 2014, 97(4), 1021-1026, DOI: 10.5740/jaoacint.SGEArrebolaLiebanas. CrossrefGoogle Scholar

  • [62] Regulation (EC) No 470/2009 of the European Parliament and of the Council of 6 May 2009, http://ec.europa.eu/health/files/eudralex/vol-5/reg_2009-470/reg_470_2009_en.pdf. Google Scholar

  • [63] Commission Regulation (EU) No 37/2010 of 22 December 2009, http://ec.europa.eu/health/files/eudralex/vol-5/reg_2010_37/reg_2010_37_en.pdf. Google Scholar

  • [64] Stubbings G., Bigwood T., The development and validation of a multiclass liquid chromatography tandem mass spectrometry (LC–MS/MS) procedure for the determination of veterinary drug residues in animal tissue using a QuEChERS (QUick, Easy, CHeap, Effective, Rugged and Safe) approach, Anal. Chim. Acta, 2009, 637, 68-78, doi:10.1016/j.aca.2009.01.029. CrossrefGoogle Scholar

  • [65] León N., Roca M., Igualada C., Martinsb C.P.B., Pastor A., Yusá V., Wide-range screening of banned veterinary drugs in urine by ultra high liquid chromatography coupled to high-resolution mass spectrometry, J. Chromatogr. A, 2012, 1258, 55-65, http://dx.doi.org/10.1016/j.chroma.2012.08.031. CrossrefGoogle Scholar

  • [66] Kinsella B., Whelan M., Cantwell H., McCormack M., Furey A., Lehotay S.J., Danaher M., A dual validation approach to detect anthelmintic residues in bovine liver over an extended concentration range, Talanta, 2010, 83, 14-24, doi:10.1016/j.talanta.2010.08.025. CrossrefGoogle Scholar

  • [67] Garrido Frenich A., del Mar Aguilera-Luiz M., Martínez Vidal J.L., Romero-González R., Comparison of several extraction techniques for multiclass analysis of veterinary drugs in eggs using ultra-high pressure liquid chromatography–tandem mass spectrometry, 2010, Anal. Chim. Acta, 661, 150-160, doi:10.1016/j.aca.2009.12.016. CrossrefGoogle Scholar

  • [68] Villar-Pulido M., Gilbert-López B., García-Reyes J.F., Ramos Martos N., Molina-Díaz A., Multiclass detection and quantitation of antibiotics and veterinary drugs in shrimps by fast liquid chromatography time-of-flight mass spectrometry, Talanta, 2011, 85, 1419-1427, doi:10.1016/j.talanta.2011.06.036. CrossrefGoogle Scholar

  • [69] Ehling S., Reddy T.M., Liquid chromatography−mass spectrometry method for the quantitative determination of residues of selected veterinary hormones in powdered ingredients derived from bovine milk, J. Agric. Food Chem., 2013, 61, 11782-11791, dx.doi.org/10.1021/jf404229j. CrossrefGoogle Scholar

  • [70] Zhang G.-J., Fang B.-H., Liu Y.-H., Wang X.-F., Xu L.-X., Zhang Y.-P., He L.-M., Development of a multi-residue method for fast screening and confirmation of 20 prohibited veterinary drugs in feedstuffs by liquid chromatography tandem mass spectrometry, J. Chromatogr. B, 2013, 936, 10-17, http://dx.doi.org/10.1016/j.jchromb.2013.07.028. CrossrefGoogle Scholar

  • [71] Streit E., Schatzmayr G., Tassis P., Tzika E., Marin D., Taranu I., Tabuc C., Nicolau A., Aprodu I., Puel O., Oswald I.P., Current situation of mycotoxin contamination and co-occurrence in animal feed—focus on Europe, Toxins, 2012, 4, 788-809, doi:10.3390/toxins4100788. CrossrefGoogle Scholar

  • [72] Rahmani A., Jinap S., Soleimany F., Qualitative and quantitative analysis of mycotoxins, CRFSFS, 2008, 8, 202-251, DOI: 10.1111/j.1541-4337.2009.00079.x. CrossrefGoogle Scholar

  • [73] Cunha S.C., Fernandes J.O., Development and validation of a method based on a QuEChERS procedure and heartcutting GC-MS for determination of five mycotoxins in cereal products, J. Sep. Sci., 2010, 33, 600-609, DOI 10.1002/jssc.200900695. CrossrefGoogle Scholar

  • [74] Ferreira I., Fernandes J.O., Cunha S.C., Optimization and validation of a method based in a QuEChERS procedure and gas chromatographyemass spectrometry for the determination of multi-mycotoxins in popcorn, Food Control, 2012, 27, 188-193, doi:10.1016/j.foodcont.2012.03.014. CrossrefGoogle Scholar

  • [75] Arroyo-Manzanares N.,. Huertas-Pérez J.F, Gámiz-Gracia L., García-Campaña A.M., A new approach in sample treatment combined with UHPLC-MS/MS for the determination of multiclass mycotoxins in edible nuts and seeds, Talanta, 2013, 115, 61-67, http://dx.doi.org/10.1016/j.talanta.2013.04.024. CrossrefGoogle Scholar

  • [76] Koesukwiwat U., Sanguankaew K., Leepipatpiboon N., Evaluation of a modified QuEChERS method for analysis of mycotoxins in rice, Food Chem., 2014, 153, 44-51, http://dx.doi.org/10.1016/j.foodchem.2013.12.029. CrossrefGoogle Scholar

  • [77] Pizzutti I.R., de Kok A., Scholten J., Righi L.W., Cardoso C.D., Rohers G.N., da Silva R.C., Development, optimization and validation of a multimethod for the determination of 36 mycotoxins in wines by liquid chromatography–tandem mass spectrometry, Talanta, 2014 129, 352-363, http://dx.doi.org/10.1016/j.talanta.2014.05.017. CrossrefGoogle Scholar

  • [78] Tamura M., Uyama A., Mochizuki N., Development of a multi-mycotoxin analysis in beer-based drinks by a modified QuEChERS method and ultra-high-performance liquid chromatography coupled with tandem mass spectrometry, Anal. Sci., 2011, 27, 629-635, DOI: 10.2116/analsci.27.629. CrossrefGoogle Scholar

  • [79] Rubert J., León N., Sáez C., Martins C.P.B., Godula M., Yusà V., Mañes J., Soriano J.M., Soler C., Evaluation of mycotoxins and their metabolites in human breast milk using liquid chromatography coupled to high resolution mass spectrometry, Anal. Chim. Acta, 2014, 820, 39-46, http://dx.doi.org/10.1016/j.aca.2014.02.009. CrossrefGoogle Scholar

  • [80] Garrido Frenich A., Romero-González R., Gómez-Pérez M.L., Martínez Vidal J.L., Multi-mycotoxin analysis in eggs using a QuEChERS-based extraction procedure and ultra-high-pressure liquid chromatography coupled to triple quadrupole mass spectrometry, J. Chromatogr. A, 2011, 1218, 4349-4356, doi:10.1016/j.chroma.2011.05.005. CrossrefGoogle Scholar

  • [81] Yogendrarajah P., Van Poucke C., De Meulenaer B., De Saeger S., Development and validation of a QuEChERS based liquid chromatography tandem mass spectrometry method for the determination of multiple mycotoxins in spices, J. Chromatogr. A, 2013, 1297, 1-11, http://dx.doi.org/10.1016/j.chroma.2013.04.075. CrossrefGoogle Scholar

  • [82] Dzuman Z., Zachariasova M., Lacina O., Veprikova Z., Slavikova P., Hajslova J., A rugged high-throughput analytical approach for the determination and quantification of multiple mycotoxins in complex feed matrices, Talanta, 2014, 121, 263-272, http://dx.doi.org/10.1016/j.talanta.2013.12.064. CrossrefGoogle Scholar

  • [83] Polycyclic Aromatic Hydrocarbons in Food 1 Scientific Opinion of the Panel on Contaminants in the Food Chain (Question N° EFSA-Q-2007-136) Adopted on 9 June 2008; The EFSA Journal, 2008, 724, 1-114, http://www.efsa.europa.eu/en/efsajournal/doc/724.pdf. Google Scholar

  • [84] Pan H., Cao Y., Optimization of pretreatment procedures for analysis of polycyclic aromatic hydrocarbons in charcoal-grilled pork, Anal. Lett., 2010, 43, 97-109, DOI:10.1080/00032710903276497. CrossrefGoogle Scholar

  • [85] Kao T.H., Chen S., Chen C.J., Huang C.W., Chen B.H., Evaluation of analysis of polycyclic aromatic hydrocarbons by the QuEChERS method and gas chromatography−mass spectrometry and their formation in poultry meat as affected by marinating and frying, J. Agric. Food Chem., 2012, 60, 1380-1389, dx.doi.org/10.1021/jf204650u. CrossrefGoogle Scholar

  • [86] Ramalhosa M.J., Paíga P., Morais S., Delerue-Matos C., Pinto Oliveira M.B.P., Analysis of polycyclic aromatic hydrocarbons in fish: evaluation of a quick, easy, cheap, effective, rugged, and safe extraction method, J. Sep. Sci., 2009, 32, 3529-3538, DOI:10.1002/jssc.200900351. CrossrefGoogle Scholar

  • [87] Forsberg N.D., Wilson G.R., Anderson K.A., Determination of parent and substituted polycyclic aromatic hydrocarbons in high-fat salmon using a modified QuEChERS extraction, dispersive SPE and GC-MS, J. Agric. Food Chem., 2011, 59, 8108-8116, dx.doi.org/10.1021/jf201745a. CrossrefGoogle Scholar

  • [88] Johnson Y.S., Determination of polycyclic aromatic hydrocarbons in edible seafood by QuEChERS-based extraction and gas chromatography-tandem mass spectrometry, J. Food Sci., 2012, 77(7), T131-T137, doi: 10.1111/j.1750-3841.2012.02758.x. CrossrefGoogle Scholar

  • [89] Jia W., Chu X., Ling Y., Huang J., Lin Y., J, Chang, Simultaneous determination of dyes in wines by HPLC coupled to quadrupole orbitrap mass spectrometry, J. Sep. Sci., 2014, 37, 782-791, DOI 10.1002/jssc.201301374. CrossrefGoogle Scholar

  • [90] Zou T., He P., Yasen A., Li Z., Determination of seven synthetic dyes in animal feeds and meat by high performance liquid chromatography with diode array and tandem mass detectors, Food Chem., 2013, 138, 1742-1748, http://dx.doi.org/10.1016/j.foodchem.2012.11.084. CrossrefGoogle Scholar

  • [91] Regulation (EC) No 1331/2008 of the European Parliament and of the Council of 16 December 2008, http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R1331&from=EN. Google Scholar

  • [92] Hashimoto J.C., Paschoal J.A., Queiroz S.C., Ferracini V.L., Assalin M.R., Reyes F.G., A simple method for the determination of malachite green and leucomalachite green residues in fish by a modified QuEChERS extraction and LC/MS/MS, J. AOAC Int., 2012, 95(3), 913-922, http://dx.doi.org/10.5740/jaoacint.11-140. CrossrefGoogle Scholar

  • [93] Stevens J., Zhai A., Determination of Banned Dyes in Food Source by QuEChERS and LC MS/MS Analysis, Agilent Technologies Inc, Wilmington, DE, North American Chemical Residue Workshop (FPRW) 2011, http://www.nacrw.org/2011/11Presentations/P-57.pdf. Google Scholar

  • [94] Agilent website: http://www.chem.agilent.com/Library/applications/5990-5940EN.pdf Google Scholar

  • [95] Picot Groz M., Martinez Bueno M.J., Rosain D., Fenet H., Casellas C., Pereira C., Maria V., Bebianno M.J., Gomez E., Detection of emerging contaminants (UV filters, UV stabilizers and musks) in marine mussels from Portuguese coast by QuEChERS extraction and GC–MS/MS, Sci. Total Environ., 2014, 493, 162-169, http://dx.doi.org/10.1016/j.scitotenv.2014.05.062. CrossrefGoogle Scholar

  • [96] Cunha S.C., Cunha C., Ferreira A.R., Fernandes J.O., Determination of bisphenol A and bisphenol B in canned seafood combining QuEChERS extraction with dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry, Anal. Bioanal. Chem., 2012, 404, 2453-2463, DOI: 10.1007/s00216-012-6389-5. CrossrefGoogle Scholar

  • [97] Jakimska A., Huerta B., Bargańska Ż., Kot-Wasik A., Rodríguez-Mozaz S., Barceló D., Development of a liquid chromatography–tandem mass spectrometry procedure for determination of endocrine disrupting compounds in fish from Mediterranean rivers, J. Chromatogr. A, 2013, 1306, 44-58, http://dx.doi.org/10.1016/j.chroma.2013.07.050. CrossrefGoogle Scholar

  • [98] Delgado-Zamarreño M.M., Pérez-Martín L., Bustamante-Rangel M., Carabias-Martínez R., A modified QuEChERS method as sample treatment before the determination of isoflavones in foods by ultra-performance liquid chromatography–triple quadrupole mass spectrometry, Talanta, 2012, 100, 320-328, http://dx.doi.org/10.1016/j.talanta.2012.07.070. CrossrefGoogle Scholar

  • [99] Piovan A., Seraglia R., Bresin B., Caniato R., Filippini R., Fucoxanthin from Undaria pinnatifida: Photostability and coextractive effects, Molecules, 2013, 18, 6298-6310, doi:10.3390/molecules18066298. CrossrefGoogle Scholar

  • [100]Koesukwiwat U.. Lehotay S.J., Miao S., Leepipatpiboon N., High throughput analysis of 150 pesticides in fruits and vegetables using QuEChERS and low-pressure gas chromatography–time-of-flight mass spectrometry, J. Chromatogr. A, 2010, 1217, 6692-6703, doi:10.1016/j.chroma.2010.05.012. CrossrefGoogle Scholar

  • [101] Kaewsuya P., Brewer W.E., Wong J., Morgan S.L., Automated QuEChERS tips for analysis of pesticide residues in fruits and vegetables by GC-MS, J. Agric. Food Chem., 2013, 61, 2299-2314, dx.doi.org/10.1021/jf304648h. CrossrefGoogle Scholar

  • [102]Cabrices O.G, Schreiber A., Brewer W.E., Automated sample preparation and analysis workflows for pesticide residue screenings in food samples using DPX-QuEChERS with LC/MS/MS, Gerstel, AppNote 8/2013, http://www.gerstel.com/pdf/p-lc-an-2013-08.pdf. Google Scholar

  • [103] Guan H., Brewer W.E., Morgan S.L., Stuff J.R., Whitecavage J.A., Foster F.D., Automated multi-residue pesticide analysis in fruits and vegetables by disposable pipette extraction (DPX) and gas chromatography/mass spectrometry, Gerstel, AppNote 1/2009, http://www.grupobiomaster.com/aplicaciones_archivo/pgcan200901_.pdf. Google Scholar

  • [104]Teledyne Tekmar website: http://www.teledynetekmar.com/AutoMateQ40/ Google Scholar

About the article

Received: 2014-11-25

Accepted: 2014-04-01

Published Online: 2015-06-18

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0109.

Export Citation

© 2015 Tomasz Rejczak, Tomasz Tuzimski. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Herbert Musarurwa, Luke Chimuka, Vusumzi Emmanuel Pakade, and Nikita Tawanda Tavengwa
Journal of Food Composition and Analysis, 2019, Volume 84, Page 103314
Hsien-Chen Chang, Yi-Ju Chen, Mei-Hua Chang, Chia-Ding Liao, Ya-Min Kao, Der-Yuan Wang, and Hwei-Fang Cheng
Journal of Chromatography B, 2019, Page 121788
Qing Chen, Xiao-Dong Pan, Bai-Fen Huang, Jian-Long Han, and Biao Zhou
RSC Advances, 2019, Volume 9, Number 48, Page 28119
Catarina Cruzeiro, Nádia Rodrigues-Oliveira, Susana Velhote, Miguel Ângelo Pardal, Eduardo Rocha, and Maria João Rocha
Analytical and Bioanalytical Chemistry, 2016, Volume 408, Number 14, Page 3681
Azhar Rashid, Yuwen Wang, Yan Li, Chang‐Ping Yu, and Qian Sun
Environmental Toxicology and Chemistry, 2019, Volume 38, Number 7, Page 1409
Ziyi Linghu, Faris Karim, Mostafa Taghvaei, and J. Scott Smith
Journal of Food Science, 2019, Volume 84, Number 7, Page 1992
Jun Chen, Guang-Guo Ying, and Wen-Jing Deng
Journal of Agricultural and Food Chemistry, 2019, Volume 67, Number 27, Page 7569
Chenyu Zhang, Yaocheng Deng, Jiangfu Zheng, Yang Zhang, Lihua Yang, Chanjuan Liao, Long Su, Yaoyu Zhou, Daoxin Gong, Ling Chen, and Ao Luo
TrAC Trends in Analytical Chemistry, 2019, Volume 118, Page 517
Jean Lucas de Oliveira Arias, Caroline Borges Rocha, Ana Luisa Queiroz Silva Santos, Liziane Cardoso Marube, Larine Kupski, Sergiane Souza Caldas, and Ednei Gilberto Primel
Food Chemistry, 2019, Volume 293, Page 112
Katarzyna Madej, Anna Jonda, Aleksandra Borcuch, Wojciech Piekoszewski, Lucjan Chmielarz, and Barbara Gil
Microchemical Journal, 2019, Volume 147, Page 962
Jun-Ge Song, Chen Cao, Jinwei Li, Yong-Jiang Xu, and Yuanfa Liu
Journal of Agricultural and Food Chemistry, 2019, Volume 67, Number 14, Page 4105
Rosa Perestrelo, Pedro Silva, Priscilla Porto-Figueira, Jorge A.M. Pereira, Catarina Silva, Sonia Medina, and José S. Câmara
Analytica Chimica Acta, 2019, Volume 1070, Page 1
Leesun Kim, Danbi Lee, Hye-Kyung Cho, and Sung-Deuk Choi
Trends in Environmental Analytical Chemistry, 2019, Volume 22, Page e00063
Aleksandra Jakubus, Maciej Gromelski, Karolina Jagiello, Tomasz Puzyn, Piotr Stepnowski, and Monika Paszkiewicz
Microchemical Journal, 2019, Volume 146, Page 258
Rafaela Takako Ribeiro de Almeida, Rodolpho Martin do Prado, Carla Porto, Geraldo Tadeu dos Santos, Sharon Ann Huws, and Eduardo Jorge Pilau
Scientific Reports, 2018, Volume 8, Number 1
Jesús M. González-Jartín, Amparo Alfonso, Inés Rodríguez, María J. Sainz, Mercedes R. Vieytes, and Luis M. Botana
Food Chemistry, 2018
Weijia Zheng, A. M. Abd El-Aty, Seong-Kwan Kim, Jeong-Min Choi, Ahmet Hacımüftüoğlu, Jae-Han Shim, Young-Sun Kang, and Ho-Chul Shin
Journal of Separation Science, 2018, Volume 41, Number 18, Page 3538
Ilona Sadok, Anna Stachniuk, and Magdalena Staniszewska
Food Analytical Methods, 2018
Xile Deng, Yong Zhou, Wenna Zheng, Lianyang Bai, and Xiaomao Zhou
International Journal of Environmental Research and Public Health, 2018, Volume 15, Number 8, Page 1680
Steven J. Lehotay and Yibai Chen
Analytical and Bioanalytical Chemistry, 2018
Chia-Chi Chang, Tsai-Hua Kao, Dequan Zhang, Zhenyu Wang, Baskaran Stephen Inbaraj, Kai-Yu Hsu, and Bing Huei Chen
Food Analytical Methods, 2018
David Moreno-González, Jaime Alcántara-Durán, Silvina M. Addona, and Miriam Beneito-Cambra
Journal of Chromatography A, 2018
A Pouliopoulos, E Tsakelidou, A Krokos, H G Gika, G Theodoridis, and N Raikos
Journal of Analytical Toxicology, 2018, Volume 42, Number 5, Page 337
Flavia Badoud, Marion Ernest, Yves-Alexis Hammel, and José Fernando Huertas-Pérez
Food Control, 2018
Katarzyna Madej, Katarzyna Janiga, and Wojciech Piekoszewski
Journal of Analytical Methods in Chemistry, 2018, Volume 2018, Page 1
Yongho Shin, Jonghwa Lee, Jiho Lee, Junghak Lee, Eunhye Kim, Kwang-Hyeon Liu, Hye Suk Lee, and Jeong-Han Kim
Journal of Agricultural and Food Chemistry, 2018
Thierry Delatour, Lucie Racault, Thomas Bessaire, and Aurélien Desmarchelier
Food Additives & Contaminants: Part A, 2018, Page 1
Martin Adam, Tomáš Bajer, Petra Bajerová, and Karel Ventura
Food Analytical Methods, 2018
Laura Escrivá, Lara Manyes, Guillermina Font, and Houda Berrada
Toxins, 2017, Volume 9, Number 10, Page 330
Alexandre Bergé, Audrey Buleté, Aurélie Fildier, and Emmanuelle Vulliet
Analytical Chemistry, 2017
Katarzyna Paraszkiewicz, Przemysław Bernat, Paulina Siewiera, Magdalena Moryl, Lidia Sas Paszt, Paweł Trzciński, Łukasz Jałowiecki, and Grażyna Płaza
Scientia Horticulturae, 2017, Volume 225, Page 802
Qing Chen, Xiao-Dong Pan, Bai-Fen Huang, and Jian-Long Han
Journal of Pharmaceutical and Biomedical Analysis, 2017, Volume 145, Page 525
Maria Teresa Salles Trevisan, Robert Wyn Owen, Pau Calatayud-Vernich, Andrea Breuer, and Yolanda Picó
Journal of Chromatography A, 2017, Volume 1512, Page 98
Mian Muhammad, Muhammad Rasul Jan, Jasmin Shah, Behisht Ara, Sohail Akhtar, and Hafeez Ur Rahman
Journal of Analytical Science and Technology, 2017, Volume 8, Number 1
Gang Shao, Jeffrey Agar, and Roger W. Giese
Journal of Chromatography A, 2017, Volume 1506, Page 128
Thiphol Satarpai, Atitaya Siripinyanond, Hung Su, and Jentaie Shiea
Rapid Communications in Mass Spectrometry, 2017, Volume 31, Number 8, Page 728
Md. Musfiqur Rahman, A. M. Abd El-Aty, Sung-Woo Kim, Sung Chul Shin, Ho-Chul Shin, and Jae-Han Shim
Journal of Separation Science, 2017, Volume 40, Number 1, Page 203
Michal Alexovič, Burkhard Horstkotte, Ivana Šrámková, Petr Solich, and Ján Sabo
TrAC Trends in Analytical Chemistry, 2017, Volume 86, Page 39
Martin Waterstraat, Andreas Hildebrand, Margit Rosler, and Mirko Bunzel
Journal of Agricultural and Food Chemistry, 2016, Volume 64, Number 45, Page 8667
Jinfang Gao, Yonghui Cui, Yanfei Tao, Lingli Huang, Dapeng Peng, Shuyu Xie, Xu Wang, Zhenli Liu, Dongmei Chen, and Zonghui Yuan
Journal of Separation Science, 2016, Volume 39, Number 21, Page 4086
Peter Tölgyessy, Zuzana Miháliková, and Mária Matulová
Chromatographia, 2016, Volume 79, Number 21-22, Page 1561
Paula Paíga and Cristina Delerue-Matos
Journal of Separation Science, 2016, Volume 39, Number 17, Page 3436
Juan José Villaverde, Beatriz Sevilla-Morán, Carmen López-Goti, José Luis Alonso-Prados, and Pilar Sandín-España
TrAC Trends in Analytical Chemistry, 2016, Volume 80, Page 568
Bergé Alexandre, Giroud Barbara, Wiest Laure, Domenjoud Bruno, Gonzalez-Ospina Adriana, and Vulliet Emmanuelle
Journal of Chromatography A, 2016, Volume 1450, Page 64
Anna Sadowska-Rociek, Ewa Cieślik, and Krzysztof Sieja
Food Analytical Methods, 2016, Volume 9, Number 10, Page 2906
J. Fernando Huertas-Pérez, Natalia Arroyo-Manzanares, Ana M. García-Campaña, and Laura Gámiz-Gracia
Critical Reviews in Food Science and Nutrition, 2017, Volume 57, Number 16, Page 3405
Steven J. Lehotay, Yelena Sapozhnikova, Lijun Han, and John J. Johnston
Journal of Agricultural and Food Chemistry, 2015, Volume 63, Number 47, Page 10341

Comments (0)

Please log in or register to comment.
Log in