Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1 (May 2015)

Issues

Use of ATR-FTIR spectroscopy to detect the changes in extra virgin olive oil by adulteration with soybean oil and high temperature heat treatment

Mariana-Atena Poiana
  • Corresponding author
  • Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Faculty of Food Processing Technology, Calea Aradului 119, 300645 Timisoara, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ersilia Alexa
  • Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Faculty of Food Processing Technology, Calea Aradului 119, 300645 Timisoara, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Melania-Florina Munteanu
  • Corresponding author
  • ”Vasile Goldis” Western University of Arad, The Faculty of General Medicine, Pharmacy and Dental Medicine, Feleacului Street 1, 310396 Arad, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ramona Gligor
  • ”Vasile Goldis” Western University of Arad, The Faculty of General Medicine, Pharmacy and Dental Medicine, Feleacului Street 1, 310396 Arad, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Diana Moigradean
  • Corresponding author
  • Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Faculty of Food Processing Technology, Calea Aradului 119, 300645 Timisoara, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Constantin Mateescu
  • Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Faculty of Food Processing Technology, Calea Aradului 119, 300645 Timisoara, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-25 | DOI: https://doi.org/10.1515/chem-2015-0110

Abstract

The structural changes induced in extra virgin olive oil (EVOO) by adulteration with soybean oil (SBO) and heat treatment at 185°C for 4 and 8 h were investigated using Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR) spectroscopy. Our results revealed that the band around 3006 cm–1 recorded shifts versus the percentage of adulterant. The changes in the absorbance at 3006 cm−1 (A3006) and in the ratio of the maximum heights of the bands at 3006 and 2925 cm−1 (A3006/A2925) were used to evaluate the EVOO adulteration. The regression analysis of A3006 and A3006/A2925 versus the percentage of adulterant was used to calculate the detection limits of adulteration. The time course of spectral changes showed that the oil heating caused notable modifications in the intensity of the absorption bands and induced no shifts in their exact position. The most relevant changes were reflected by conjugation and cis-trans isomerisation of double bonds, the formation of epoxides and widening of the band in the C=O region due to formation of secondary oxidation products. This study highlights that ATR-FTIR spectroscopy may be a promising means to differentiate among pure and adulterated oils and to study the thermooxidative processes in oils undergoing thermal stress.

Graphical Abstract

Keywords : ATR-FTIR spectroscopy; extra-virgin olive oil; soybean oil; adulteration; thermo-oxidation.

References

  • [1] Poulli K.I., Mousdis G.A., Georgiou C.A., Rapid synchronous fluorescence method for virgin olive oil adulteration assessment, Food Chem., 2007, 105, 369-375. Web of ScienceGoogle Scholar

  • [2] Ben-Ayed R., Kamoun-Grati N., Rebai A., An Overview of the authentication of olive tree and oil, Compr. Rev. Food Sci. F., 2013, 12, 218-227. Web of ScienceCrossrefGoogle Scholar

  • [3] Poiana M.A., Mousdis G., Alexa E., Moigradean D., Negrea M., Mateescu C., Application of FT-IR spectroscopy to assess the olive oil adulteration, Journal of Agroalimentary Processes and Technologies, 2012, 18, 277-282. Google Scholar

  • [4] Rohman A., Man Y.B.C., Yusof F.M., The Use of FTIR Spectroscopy and chemometrics for rapid authentication of extra virgin olive oil, J. Am. Oil Chem. Soc., 2014, 91, 207-213. Web of ScienceGoogle Scholar

  • [5] Zhang Q., Liu C., Sun Z., Hu X., Shen Q., Wu J., Authentication of edible vegetable oils adulterated with used frying oil by Fourier Transform Infrared Spectroscopy, Food Chem., 2012, 132, 1607- 1613. Web of ScienceGoogle Scholar

  • [6] Poiana M.A., Mousdis G.A., Georgiou C.A., Alexa E., Moigradean D., Cocan I., Detection of thermal processing impact on olive and sunflower oil quality by FTIR spectroscopy, Journal of Agroalimentary Processes and Technologies, 2013, 19, 48-56. Google Scholar

  • [7] Guillen M.D., Ruiz A., Monitoring of heat-induced degradation of edible oils by proton NMR, Eur. J. Lipid Sci. Tech., 2008, 110, 52-60. Web of ScienceGoogle Scholar

  • [8] Tena N., Aparicio R., García-González D.L., Thermal deterioration of virgin olive oil monitored by ATR-FTIR analysis of trans content, J. Agr. Food Chem., 2009, 57, 9997-10003. CrossrefWeb of ScienceGoogle Scholar

  • [9] Silva L., Pinto J., Carrola J., Paiva-Martins F., Oxidative stability of olive oil after food processing and comparison with other vegetable oils, Food Chem., 2010, 121, 1177-1187. Web of ScienceGoogle Scholar

  • [10] Innawong B., Mallikarjunan P., Irudayaraj J., Marcy J.E., The determination of frying oil quality using Fourier transform infrared attenuated total reflectance, LWT-Food Sci. Technol., 2004, 37, 23-28. CrossrefGoogle Scholar

  • [11] Navarra G., Cannas M., D’Amico M., Giacomazza D., Militello V., Vaccaro L., Leone M., Thermal oxidative process in extravirgin olive oils studied by FTIR, rheology and time-resolved luminescence, Food Chem., 2011, 126, 1226-1231. Google Scholar

  • [12] Martinez-Yusta M., Goicoechea E., Guillen M.D., A review of thermo-oxidative degradation of food lipids studied by 1H NMR spectroscopy: influence of degradative conditions and food lipid nature, Compr. Rev. Food Sci. F., 2014, 13, 838-859. Web of ScienceGoogle Scholar

  • [13] Vlachos N., Skopelitis Y., Psaroudaki M., Konstantinidou V., Chatzilazarou A., Tegou E., Applications of Fourier transform - infrared spectroscopy to edible oils, Anal. Chim. Acta, 2006, 573-574, 459-465. Google Scholar

  • [14] Casal S., Malheiro R., Sendas A., Oliveira B.P.P., Pereira J.A., Olive oil stability under deep-frying conditions, Food Chem. Toxicol., 2010, 48, 2972-2979. Web of ScienceGoogle Scholar

  • [15] Guillen M.D., Cabo N., Ibargoitia M.L., Ruiz A., Study of both sunflower oil and its headspace throughout the oxidation process. Occurrence in the headspace of toxic oxygenated aldehydes, J. Agric. Food Chem., 2005, 53, 1093-1101. Google Scholar

  • [16] Gonzala F.B., Pasquini C., Rodrigues C.E.C., Meirelles A.J.A., Comparison of near-infrared emission spectroscopy and the Rancimat method for the determination of oxidative stability, Eur. J. Lipid Sci. Tech., 2007, 109, 61-65. Web of ScienceGoogle Scholar

  • [17] Tena N., Aparicio-Ruiz R., García-González D.L., Time course analysis of fractionated thermoxidized virgin olive oil by FTIR Spectroscopy, J. Agric. Food Chem., 2013, 61, 3212-3218. Web of ScienceGoogle Scholar

  • [18] Gonzaga F.B., Pasquini C., A new method for determination of the oxidative stability of edible oils at frying temperatures using near infrared emission spectroscopy, Anal. Chim. Acta, 2006, 570, 129-135. Google Scholar

  • [19] Marinova E.M., Seizova K.A., Totseva I.R, Panayotova S.S., Marekov Ilko N., Momchilova S.M., Oxidative changes in some vegetable oils during heating at frying temperature, Bulg. Chem. Commun., 2012, 44, 57-63. Google Scholar

  • [20] Zhang T.Y., Jiang Y.R., Chen Y.Q., Change in fatty acid composition of frying oils during frying, Food Sci., 2013, 34, 132-136. Google Scholar

  • [21] Nikovska K., Oxidative Stability and rheological properties of oil-in-water emulsions with walnut oil, Advance Journal of Food Science and Technology, 2010, 2, 172-177. Google Scholar

  • [22] Gurdeniz G., Tokatli F., Ozen B., Differentiation of mixtures of monovarietal olive oils with mid-infrared spectroscopy and chemometrics, Eur. J. Lipid Sci. Tech., 2007, 109, 1194-1202. Google Scholar

  • [23] de la Mata P., Dominguez-Vidal A., Bosque-Sendra J.M., Ruiz- Medina A., Cuadros-Rodríguez L., Ayora-Canada M.J., Olive oil assessment in edible oil blends by means of ATR-FTIR and chemometrics, Food Control, 2012, 23:449-455. CrossrefWeb of ScienceGoogle Scholar

  • [24] Obeidat S.M., Khanfar M.S., Obeidat W.M., Classification of edible oils and uncovering adulteration of virgin olive oil using FTIR with the aid of chemometrics, Aust. J. Basic Appl. Sci., 2009, 3, 2048-2053. Google Scholar

  • [25] Lerma-Garcia M.J., Ramis-Ramos G., Herrero Martínez J.M., Simo-Alfonso E.F., Authentication of extra virgin olive oils by Fourier-Transform Infrared Spectroscopy, Food Chem., 2010, 118, 78-83. Web of ScienceCrossrefGoogle Scholar

  • [26] Rohman A., Che Man Y.B., Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil, Food Res. Int., 2010, 43, 886-892. Google Scholar

  • [27] Oussama A., Elabadi F., Platikanov S., Kzaiber F., Tauler R., Detection of olive oil adulteration using FT-IR spectroscopy and PLS with variable importance of projection (VIP) Scores, J. Am. Oil Chem. Soc., 2012, 89, 1807-1812. Web of ScienceGoogle Scholar

  • [28] Van de Voort F., Ismail A., Sedman J., Emo G., Monitoring the oxidation of edible oils by FTIR spectroscopy, J. Am. Oil Chem. Soc., 1994, 71, 243-253. Google Scholar

  • [29] Guillenn M.D., Cabo N., Usefulness of the frequency data of the Fourier transform infrared spectra to evaluate the degree of oxidation of edible oils, J. Agric. Food Chem., 1999, 47, 709-719. Google Scholar

  • [30] Guillen M.D., Cabo N., Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils, Food Chem., 2002, 77, 503-510. Google Scholar

  • [31] Rohman A., Man Y.B.C., Ismail A., Hashim P., Monitoring the oxidative stability of virgin coconut oil during oven test using chemical indexes and FTIR spectroscopy, Int. Food Res. J., 2011, 18, 303-310. Google Scholar

  • [32] Moharam M.A., Abbas L.M., A study on the effect of microwave heating on the properties of edible oils using FTIR spectroscopy, Afr. J. Microbiol. Res., 2010, 4, 1921-1927. Google Scholar

  • [33] Jović O., Smolić T., Jurišić Z., Meić Z., Hrenara T., Chemometric analysis of croatian extra virgin olive oils from central Dalmatia region, Croat. Chem. Acta, 2013, 86, 335–344. Web of ScienceGoogle Scholar

  • [34] Guillen M., Cabo N., Relationships between the composition of edible oils and lard and the ratio of the absorbance of specific bands of their Fourier Transform Infrared Spectra. Role of some bands of the fingerprint region, J. Agric. Food Chem., 1998, 46, 1788-1793. Google Scholar

  • [35] Alexa E., Dragomirescu A., Pop G., Jianu C., Dragos D., The use of FT-IR spectroscopy in the identification of vegetable oils adulteration, J. Food Agric. Environ., 2009, 7, 20-24. Google Scholar

  • [36] Mallegol J., Gardette J.L., Lemaire J., Long-term behavior of oilbased varnishes and paints I. Spectroscopic analysis of curing drying oils, J. Am. Oil Chem. Soc., 1999, 76, 967-976. Google Scholar

  • [37] Moreno M., Olivares M., López A., Adelantado J., Reig B., Analytical evaluation of polyunsaturated fatty acids degradation during thermal oxidation of edible oils by Fourier transform infrared spectroscopy, Talanta, 1999, 50, 269-275. Google Scholar

  • [38] Bach D., Miller I.R., Attenuated total reflection (ATR) Fourier transform infrared spectroscopy of dimyristoyl phosphatidylserine–cholesterol mixtures, BBA Biomembranes, 2001, 1514, 318-326. Google Scholar

About the article

Received: 2015-02-06

Accepted: 2015-04-02

Published Online: 2015-05-25


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0110.

Export Citation

© 2015 Mariana-Atena Poiana et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ali H. Tayeb, Hasan Sadeghifar, Martin A. Hubbe, and Orlando J. Rojas
Industrial Crops and Products, 2017, Volume 104, Page 253
[2]
Lucyna Dymińska, Maciej Calik, Abduladhim Moamer M. Albegar, Adam Zając, Kamil Kostyń, Jadwiga Lorenc, and Jerzy Hanuza
International Journal of Food Properties, 2017, Volume 20, Number 9, Page 2003
[3]
Nikolaos Nenadis and Maria Z. Tsimidou
European Journal of Lipid Science and Technology, 2017, Volume 119, Number 1, Page 1600148
[4]
Pei Wang, Jianbo Sun, Tiantian Zhang, and Weijie Liu
Applied Spectroscopy Reviews, 2016, Volume 51, Number 10, Page 763
[5]
Adrie A. M. van der Hoeven
Open Journal of Applied Sciences, 2015, Volume 05, Number 11, Page 705

Comments (0)

Please log in or register to comment.
Log in