Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Numerical analysis of thermal stresses in a new design of microtubular stack

Paulina Pianko-Oprych
  • Corresponding author
  • Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, West Pomeranian University of Technology, Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomasz Zinko
  • Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, West Pomeranian University of Technology, Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zdzisław Jaworski
  • Faculty of Chemical Technology and Engineering, Institute of Chemical Engineering and Environmental Protection Processes, West Pomeranian University of Technology, Szczecin, al. Piastów 42, 71-065 Szczecin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-07-07 | DOI: https://doi.org/10.1515/chem-2015-0116


Microtubular Solid Oxide Fuel Cells (mSOFCs) are one of the most promising and efficient devices that convert chemical energy of fuels into electrical energy. However, mSOFC stacks work at high operating temperature over 650°C, which leads to thermally induced mechanical stresses and in consequence may cause failure of stack components. In order to reduce the local thermal gradients and prevent high stresses in the stack components, it is desirable to study the effect of stack design on its performance. For this purpose a 3D numerical approach was developed to estimate thermal expansion of fuel cell inside an mSOFC stack and to reduce the associated experimental efforts and costs. Initially, a Computational Fluid Dynamics (CFD) model was used to calculate the temperature and species concentration profiles. During the second modeling step temperature profiles were used in the thermo-mechanical model to calculate the thermal stress distribution in the mSOFC stack. The results maximum thermal axial elongation that equals 1.4 mm for the mSOFC stack. The modelled maximum radial elongation was equal to 0.5 mm in the contact areas of the cylindrical housing and manifolds on the fuel inlet side.

Graphical Abstract

Keywords : microtubular solid oxide fuel cell (mSOFC) stack; thermal stresses; Computational Fluid Dynamics (CFD); Finite Element Method (FEM)


  • [1] Fardadi M., Mueller F., Jabbari F., Feedback control of solid oxide fuel cell spatial temperature variation, J. Power Sources, 2010, 195, 13, 4222-4233. DOI: 10.1016/j.cherd.2012.09.004. Web of ScienceCrossrefGoogle Scholar

  • [2] Vijay P., Hosseini S., Tade M. O., A novel concept for improved thermal management of the planar SOFC, Chem. Eng. Research & Design, 2013, 91, 560-572. DOI: 10.1016/j. cherd.2012.09.004. CrossrefGoogle Scholar

  • [3] Dey T., Singdeo D., Basu R. N., Bose M., Ghosh P. C., Improvement in solid oxide fuel cell performance through design modifications: an approach based on root cause analysis, Inter. J. Hydrogen Energy, 2014, 39, 17258-17266. DOI: 10.1016/j.ijhydene.2014.08.025. CrossrefWeb of ScienceGoogle Scholar

  • [4] Boigues-Munoz C., Santori G., McPhail S., Polonara F., Thermochemical model and experimental validation of a tubular SOFC cell comprised in a 1 kWel stack design for CHP applications, Int. J. Hydrogen Energy, 2014, 39, 21714-21723. DOI: 10.1016/j.ijhydene.2014.09.021. CrossrefGoogle Scholar

  • [5] Al-Masri, Peksen M., Blum L., Stolten D., A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions, Applied Energy, 2014, 135, 539-547. DOI:10.1016/j. apenergy.2014.08.052. CrossrefWeb of ScienceGoogle Scholar

  • [6] Mounir H., Belaiche M., El Marjani A., El Gharad A., Thermal stress and probability of survival investigation in a multibundle integrated planar solid oxide fuel cells IP-SOFC (integrated planar solid oxide fuel cell), Energy, 2014, 66, 378- 386. DOI: 10.1016/j.energy.2014.01.017. CrossrefGoogle Scholar

  • [7] Wang G., Yang Y., Zhang H., Xia W., 3D model of thermos-fluid and electrochemical for planar SOFC, J. Power Sources, 2007, 167, 398-405. DOI: 10.1016/j.jpowsour.2007.02.019. CrossrefGoogle Scholar

  • [8] Yakabe H., Ogiwara T., Hishinuma M., Yasuda I., 3D model calculation for planar SOFC, J. Power Sources, 2001, 102, 144- 154. DOI: 10.1016/S0378-7753(01)00792-3. CrossrefGoogle Scholar

  • [9] Reckangle K. P., Williford R. E., Chick L. A., Rector D. R., M. A., Khaleel M. A., Three-dimensional thermos-fluid electrochemical modeling of planar SOFC stacks, J. Power Sources, 2003, 113, 109-114. PII: S0378-7753(02)00487-1. Google Scholar

  • [10] Ki J., Kim D., Computational model to predict thermal dynamics of planar solid oxide fuel cell stack during start-up process, J. Power Sources, 2010, 195, 3186-3200. DOI: 10.1016/j. powsour.2009.11.129. CrossrefWeb of ScienceGoogle Scholar

  • [11] Weil K. S., Koeppel B. J., Comparative finite element analysis of the stress-strain states in three different bonded solid oxide fuel cell seal designs, J. Power Sources, 2008, 180, 343-353. DOI: 10.1016/j.jpowsour.2008.01.093. CrossrefWeb of ScienceGoogle Scholar

  • [12] Yakabe H., Baba Y., Sakurai T., Yoshitaka Y., Evaluation of the residual stress for anode-supported SOFCs, J. Power Sources, 2004, 135, 9-16. DOI: 10.1016/j.jpowsour.2003.11.049. CrossrefGoogle Scholar

  • [13] Nakajo A., Stiller C., Harkegard G., Bolland O., Modeling of thermal stresses and probability of survival of tubular SOFC, J. Power Sources, 2006, 158, 287-294. DOI: 10.1016/j. jpowsour.2005.09.004. CrossrefGoogle Scholar

  • [14] Cui D., Cheng M., Thermal stress modeling of anode supported micro-tubular solid oxide fuel cell, J. Power Sources, 2009, 192, 400-407. DOI: 10.1016/j.jpowsour.2009.03.046. Web of ScienceCrossrefGoogle Scholar

  • [15] Serincan M. F., Pasaogullari U., Sammes N. M., Thermal stresses in an operating micro-tubular solid oxide fuel cell, J. Power Sources, 2010, 195, 4905-4914. DOI: 10.1016/j. jpowsour.2009.12.108. Web of ScienceCrossrefGoogle Scholar

  • [16] Xue X., Tang J., Sammes N., Du Y., Dynamic modeling of single tubular SOFC combining heat/mass transfer and electrochemical reaction effects, J. Power Sources, 2005, 142, 211-222. DOI: 10.1016/j.jpowsour.2004.11.023. CrossrefGoogle Scholar

  • [17] Wei S. S., Wang T. H., Wu J. S., Numerical modeling of interconnect flow channel design and thermal stress analysis of a planar anode supported solid oxide fuel cell stack, Energy, 2014, 69, 553-561. DOI: 10.1016/j.energy.2014.03.052. CrossrefWeb of ScienceGoogle Scholar

  • [18] Liu L., Kim G. Y., Chandra A., Modeling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions, J. Power Sources, 2010, 195, 2310-2318. DOI: 10.1016/j.jpowsour.2009.10.064. Web of ScienceCrossrefGoogle Scholar

  • [19] Peksen M., 3D thermomechanical behaviour of solid oxide fuel cells operating in different environments, Int. J. Hydrogen Energy, 2013, 38, 13408-13418. DOI: 10.1016/j/ ijhydene.2013.07.112. Web of ScienceCrossrefGoogle Scholar

  • [20] Peksen M., A coupled 3D thermofluid-thermomechanical analysis of a planar type production scale SOFC stack, Int. J. Hydrogen Energy, 2011, 36, 11914-11928. DOI: 10.1016/j/ ijhydene.2011.06.045. Web of ScienceCrossrefGoogle Scholar

  • [21] Pianko-Oprych P., Kasilova E., Jaworski Z., Proceedings of 11th European SOFC and SOE Forum 2014, (1-4 July 2014, Lucerne, Switzerland), 2014, A1322, 1-10. Google Scholar

  • [22] Pianko-Oprych P., Cell, Stack and System Modelling, Solid Oxide Fuel Cell, Lambert Academic Publishing, 2014, ISBN 978- 3-659-62295-3. Google Scholar

  • [23] Li J., Lin Z., Effects of electrode composition on the electrochemical performance and mechanical property of micro-tubular solid oxide fuel cell, Intern. J. Hydrogen Energy, 2012, 37, 12925-12940. DOI: 10.1016/j.ijhydene.2012.05.075. CrossrefGoogle Scholar

  • [24] Anderman Industrial Ceramics Ltd. Zirconia Yttria Stabilised, brochure, (2014). Google Scholar

  • [25] SUAV data, internal project report, 2014. Google Scholar

  • [26] Delette G., Laurencin J., Usseglio-Virett F., Villanova J., Bleuet P., Lay-Grindler E., Le Bihan T., Thermo-elastic properties of SOFC/SOEC electrode materials determined from threedimensional microstructural reconstructions, Intern. Journal of Hydrogen Energy, 2013, 38, 12379-12391. DOI: 10.1016/j. ijhydene.2013.07.027. CrossrefGoogle Scholar

  • [27] Corning MACOR Machinable Glass Ceramic 01, 02, brochure, 2014. Google Scholar

  • [28] Haynes International Hastelloy X Alloy, brochure, 2014. Google Scholar

  • [29] Inconel Special Metals Alloy X 750, brochure, 2014. Google Scholar

About the article

Received: 2014-11-06

Accepted: 2015-05-07

Published Online: 2015-07-07

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0116.

Export Citation

© 2015 Paulina Pianko-Oprych et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in