Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2016 (Open Chemistry): 1.027
IMPACT FACTOR 2016 (Central European Journal of Chemistry): 1.460

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.288
Source Normalized Impact per Paper (SNIP) 2016: 0.735

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1 (Jul 2015)

Issues

Effects of organic compounds on the macroalgae culture of Aegagropila linnaei

Beata Messyasz
  • Corresponding author
  • Adam Mickiewicz University in Poznan, Faculty of Biology, Institute of Environmental Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznan, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Boguslawa Leska
  • Adam Mickiewicz University in Poznan, Faculty of Chemistry, Umultowska 89B, 61-614 Poznan, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Fabrowska
  • Adam Mickiewicz University in Poznan, Faculty of Chemistry, Umultowska 89B, 61-614 Poznan, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta Pikosz
  • Adam Mickiewicz University in Poznan, Faculty of Biology, Institute of Environmental Biology, Department of Hydrobiology, Umultowska 89, 61-614 Poznan, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adam Cieslak
  • Poznan University of Life Science, Faculty of Animal Breeding and Biology, Wolynska 33, 60-637 Poznan, Poland>
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grzegorz Schroeder
  • Adam Mickiewicz University in Poznan, Faculty of Chemistry, Umultowska 89B, 61-614 Poznan, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-07-03 | DOI: https://doi.org/10.1515/chem-2015-0119

Abstract

The effects of the impact of four organic compounds (ascorbic acid, biotin, glucose and sucrose) on ash, protein, fiber, fat and amino acid contents in the freshwater Aegagropila linnaei biomass were examined in 7 and 14 days of cultivations in high concentrations of tested compounds (100 mg L-1). The presence of examined organic compounds had a negligible effect on the development of algae and their biomass composition. There were no significant differences in the amino acids composition in the biomass in the presence of organic compounds compared to the test system. However, the increase in ash content was observed irrespective of the cultivation time in the case of all used organic compounds. Only slight differences in crude fat concentration were observed in the case of 7 days cultivation with ascorbic acid, biotin and sucrose, while the highest increase of ash content was observed after 14 days of supplementation with glucose. None of the compounds affected changes in amino acid content in the Aegagropila linnaei biomass. The results suggest that an environment enriched with the test organic compounds had only minimal, or at most short-term, effects on the algal biomass composition.

Graphical Abstract

Keywords : remediation; sucrose; glucose; biotin; vitamin C

References

  • [1] Crawford R.L., Crawford D.L., Bioremediation: principles and applications. Cambridge University Press, New York, 1996. Google Scholar

  • [2] Jasrotia S., Kansal A., Kishore V.V.N., Arsenic phyco-remediation by Cladophora algae and measurement of arsenic speciation and location of active absorption site using electron microscopy, Microch. Journal, 2014, 114, 197-202. Google Scholar

  • [3] Maznah W.O.W., Al-Fawwaz A.T., Surif M., Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia, J. of Environ. Scien., 2012, 24, 1386-1393. Google Scholar

  • [4] Parameswari E., Lakshmanan A., Thilagavathi T., Phyco-remediation of heavy metals in polluted water bodies, Electronic J. of Environ., Agricul. and Food Chem., 2010, 9, 808-814. Google Scholar

  • [5] Fabrowska J., Łęska B., Algae and their chelating properties, In: Rybachenko V.I. (Ed.), From molecules to functional architecture, Supramolecular interactions. East Publisher House, Donetsk, 2012. Google Scholar

  • [6] Baran A., Baysal S.H., Sukatar A., Removal of Cr6+ from aqueous solution by some algae, J. of Environ. Biol., 2005, 26, 329-333. Google Scholar

  • [7] Romera E., Gonzalez F., Ballester A., Blazquez M.L., Munoz J.A., Comparative study of biosorption of heavy metals using different types of algae, Biores. Technol., 2007, 98, 3344-3353. Google Scholar

  • [8] Rybak A., Messyasz B., Łęska B., Freshwater Ulva (Chlorophyta) as a bioaccumulator of selected heavy metals (Cd, Ni and Pb) and alkaline earth metals (Ca and Mg), Chemosphere, 2012, 89, 1066-1076. Google Scholar

  • [9] Wang J., Chen C., Biosorbents for heavy metals removal and their future, Biotech. Advan., 2009, 27, 195-226. Google Scholar

  • [10] Lee Y.C., Chang S.P., The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae, Biores. Techn., 2011, 102, 5297-5304. Google Scholar

  • [11] Rangsayatorn N., Upatham E.S., Kruatrachue M., Pokethitiyook P., Lanza G.R., Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium, Environ. Poll., 2002, 119, 45-53. Google Scholar

  • [12] Sternberg S.P.K., Dorn R.W., Cadmium removal using Cladophora in batch, semi-batch and flow reactors, Biores. Techn., 2002, 81, 249-255. Google Scholar

  • [13] Tien C.J., Biosorption of metal ions by freshwater algae with different surface characteristics, Process Biochemistry, 2002, 38, 605-613. Google Scholar

  • [14] Tuzen M., Sari A., Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: Equilibrium, thermodynamic and kinetic studies, Chem. Engin. J., 2010, 158, 200-206. Google Scholar

  • [15] Laliberte G., Olguin E.J., De La Noue J., Mass cultivation and wastewater treatment using Spirulina. In: Vonshak A. (Ed.). Spirulina platensis (Arthrospira): Physiology, Cell Biology and Biotechnology. Taylor and Francis, London, Bristol and PA, 1997. Google Scholar

  • [16] Rybak A., Messyasz B., Łęska B., Pikosz M., Fabrowska J., Wydajność asymilacji azotu na przykładzie wybranych gatunków roślin wodnych. In: Schroeder G., Grzesiak P. (Ed.). Środowisko i Przemysł, Cursiva, Poznań, 2012. Google Scholar

  • [17] Semple K.T., Cain R.B., Schmidt S., Biodegradation of aromatic compounds by microalgae, FEMS Microbiol. Lett., 1999, 170, 291-300. Google Scholar

  • [18] Katagi T., Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms, Rev Environ Contam. Toxicol. 2010, 204, 1-132. Google Scholar

  • [19] Jin Z.P., Luo K., Zhang S., Zheng Q., Yang H. Bioaccumulation and catabolism of prometryne in green algae, Chemosphere, 2012, 87, 278-284. Google Scholar

  • [20] Andersen R.A., Algal culturing techniques. Elsevier Academic Press, London, 2005. Google Scholar

  • [21] AOAC, Horwitz W., Latimer W., Association of Official Analytical Chemists, Official Methods of Analysis, 18th Edition, Gaithersburg Maryland, USA, 2007. Google Scholar

  • [22] Khuantrairong T., Traichaiyaporn S., The nutritional value of edible freshwater alga Cladophora sp. (Chlorophyta) grown under different phosphorus concentrations, Int J. Agric. Biol. 2011, 13, 297-300. Google Scholar

  • [23] Khuantrairong T., Traichaiyaporn S., Enhancement of carotenoid and chlorophyll content of an edible freshwater alga (Kai: Cladophora sp.) by supplementary inorganic phosphate and investigation of its biomass production, Maejo. Int. J. Sci. Technol., 2012, 6, 1-11. Google Scholar

  • [24] Kong W-B., Yang H., Cao Y-T., Song H., Hua S-F, Xia C-G., Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrates production by Chlorella vulgaris in mixotrophic culture, Food Technol. Biotechnol., 2013, 51, 62-69. Google Scholar

  • [25] Bhatnagar A., Chinnasamy S., Singh M., Das K.C., Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters, Appl. Energy, 2011, 88, 3425-3431. CrossrefGoogle Scholar

  • [26] Rani G., Changes in protein profile and amino acids in Cladophora vagabunda (Chlorophyceae) in response to salinity stress, J. Appl. Phycol., 2007, 19, 803-807. CrossrefGoogle Scholar

  • [27] Berman T., Chava S., Algal growth on organic compounds as nitrogen sources, J. Plankton Res. 1999, 21, 1423-1437. CrossrefGoogle Scholar

About the article

Received: 2015-02-12

Accepted: 2015-05-15

Published Online: 2015-07-03


Citation Information: Open Chemistry, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0119.

Export Citation

© 2015 Beata Messyasz et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in