Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year


IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
Online
ISSN
2391-5420
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

Volume 13 (2015)

FT-Raman spectroscopy as a tool in evaluation the response of plants to drought stress

Magdalena Rys
  • Corresponding author
  • The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, PL-30-239 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maciej Szaleniec
  • Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30-239 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrzej Skoczowski
  • Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, PL-31-054 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Iwona Stawoska
  • Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, PL-31-054 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Janeczko
  • The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, PL-30-239 Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-08-20 | DOI: https://doi.org/10.1515/chem-2015-0121

Abstract

The aim of study was to evaluate the usefulness of FT-Raman spectroscopy in assessing stress-induced metabolic changes in plants. 20-d-old optimally watered plants of soybean were exposed to drought. Metabolic changes in optimally watered and drought-stressed plants were monitored using FT-Raman spectroscopy. In parallel, analyses were carried out of fatty acid composition and pigment content using analytical methods. These compounds are associated with the response of plants to environmental stress. While fatty acid assays in study were inconclusive, the pigment content analysis gave promising results. FT-Raman experiment demonstrated a decrease in carotenoid content in leaf, as a result of drought, which was confirmed by spectrophotometric analysis. In addition to the analysis of aforementioned compounds, FT-Raman spectroscopy allowed the simultaneous observation of a wider spectrum of compounds scattering the radiation in the leaves tested, and their subsequent comparative analysis. The impact of drought on metabolism of soybean was clearly visible on spectra and confirmed using cluster analysis. The technical problem of the influence of leaf water content on measurements, which appeared in studies, will be discussed. To conclude, FT-Raman spectroscopy may be a good complement to other non-invasive methods, e.g., fluorescent methods, in assessing the stress-induced damage of crops.

Keywords : Carotenoids; Drought stress; Fatty acids; FT-Raman spectroscopy; Soybean

References

  • [1] P. Rodziewicz, B. Swarcewicz, K. Chmielewska, A. Wojakowska, M. Stobiecki, Acta Physiol. Plant. 36, 1 (2014) CrossrefGoogle Scholar

  • [2] T. Hájek, L. Adamec, Biologia 65, 69 (2010) Google Scholar

  • [3] J. Peñuelas, I. Filella, Trends Plant Sci. 3, 151 (1998) CrossrefGoogle Scholar

  • [4] A. Janeczko, J. Oklešťková, A. Siwek, M. Dziurka, E. Pociecha, M. Kocurek, O. Novák, J Steroid Biochem. Mol. Biol. 138, 384 (2013) Google Scholar

  • [5] B.N. Smith, R.S. Criddle, L.D. Hansen, J. Plant Biol. 27, 89 (2000) Google Scholar

  • [6] A. Skoczowski, M. Troć, Isothermal calorimetry and Raman spectroscopy to study response of plants to abiotic and biotic stress. In: Molecular Stress Physiology of Plants (Springer, 2013) Google Scholar

  • [7] C. Frankenberg, J. Berry, L.Guanter, J.Joiner, SPIE Newsroom: 10.1117/2.1201302.004725. https://spie.org/x92267.xml (2013) Google Scholar

  • [8] B. Schrader, H. Schulz, G.N. Andreev, H.H. Klump, J. Sawatzki, Talanta 53, 35 (2000) Google Scholar

  • [9] H. Schulz, M. Baranska, Vib. Spectrosc. 43, 13 (2007) Google Scholar

  • [10] N. Gierlinger, M. Schwanninger, Spectroscopy 21, 69 (2007) Google Scholar

  • [11] R.S. Das, Y.K. Agrawal, Vib. Spectrosc. 57, 163 (2011) Google Scholar

  • [12] M. Troć, A. Skoczowski, M. Barańska, J. Therm. Anal. Calorim. 95, 727 (2009) Google Scholar

  • [13] A. Skoczowski, M. Troć, A. Baran, M. Baranska, J. Therm. Anal. Calorim. 104, 187 (2011) Google Scholar

  • [14] K.S. Liu, Chemistry and nurtitional value of soybean components. In Soybean: Chemistry, Technology, and Utilization (Chapman & Hall, New York, 1997) Google Scholar

  • [15] Z. Wu, D. Schenk-Hamlin, W. Zhan, D.W. Ragsdale, G.E. Heimpel, Ann. Entomol. Soc. Am. 97, 209 (2004) Google Scholar

  • [16] S. Munné-Bosch, L. Alegre, Planta, 210, 925 (2000) Google Scholar

  • [17] A.K. Parida, V.S. Dagaonkar, M.S. Phalak, G.V. Umalkar, L.P. Aurangabadkar, Plant Biotechnol. Rep. 1, 37 (2007) Google Scholar

  • [18] A. Janeczko, K. Hura, A. Skoczowski, I. Idzik, J. Biesaga-Kościelniak, E. Niemczyk, Acta Physiol. Plant. 31, 71 (2009) Google Scholar

  • [19] H.K. Lichtenthaler, A.R. Wellburn, Biochem. Soc. T. 603, 590 (1983) Google Scholar

  • [20] X. Xiao, X. Xu, F. Yang, Silva Fenn. 42, 705 (2008) Google Scholar

  • [21] R. Withnall, B.Z. Chowdhry, J. Silver, H.G.M. Edwards, L.F.C. de Oliveira, Spectrochim. Acta A, 59, 2207, (2003) Google Scholar

  • [22] R. Baranski, M. Baranska, H. Schulz, Planta 222, 448 (2005) Google Scholar

  • [23] M. Baranska, H. Schulz, E. Joubert, M. Manley, Anal. Chem. 78, 7716 (2006) Google Scholar

  • [24] M. Baranska, R. Baranski, H. Schulz, T. Nothnagel, Planta 224, 1028, (2006) Google Scholar

  • [25] E.H. Papaioannou, M. Liakopoulou-Kyriakides, D. Christofilos, I. Arvanitidis, G. Kourouklis, Appl. Biochem. Biotechnol. 159, 478 (2009) Google Scholar

  • [26] A. Janeczko, J. Biesaga-Kościelniak, M. Dziurka, J. Oklešťková, M. Kocurek, G. Szarek-Łukaszewska, Z. Janeczko, Acta Sci. Pol. (Agricultura) 10, 33 (2011) Google Scholar

  • [27] I. Toumi, M. Gargouri, I. Nouairi, P.N. Moschou, A. Ben Salem-Fnayou, A. Mliki, M. Zarrouk, A. Ghorbel, Biol. Plantarum 52, 161 (2008) Google Scholar

  • [28] A. Gigon, A.R. Matos, D. Laffray, Y. Zuily-Fodil, A.T. Pham-Thi, Ann. Bot. 94, 345 (2004) Google Scholar

  • [29] D. Zhong, H. Du, Z. Wang, J. Am. Soc. Hortic. Sci. 136, 35 (2011) Google Scholar

  • [30] F.I. Collins, V.E. Sedgwick, J. Am. Oil Chem. Soc. 36, 641 (1959) CrossrefGoogle Scholar

  • [31] N. Bellaloui, Am. J. Plant Sci. 2, 692 (2011) Google Scholar

  • [32] M.G. Kleinschmidt, V.A. McMahon, Plant Physiol. 46, 286 (1970) Google Scholar

  • [33] M. Żuk, L. Dymińska, A. Kulma, A. Boba, A. Prescha, J. Szopa, M. Mączka, A. Zając, K. Szołtysek, J. Hanuza, Spectrochim. Acta A 78,1080 (2011) Google Scholar

  • [34] M. Troć, Impact of herbal extract with different allelopathic potential on metabolism of mustard, rape, wheat and clover seedlings. PhD Thesis. (Krakow, in Polish, 2011) Google Scholar

About the article

Received: 2014-08-26

Accepted: 2015-06-01

Published Online: 2015-08-20


Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0121.

Export Citation

© 2015 Magdalena Rys et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in