Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

IMPACT FACTOR 2018: 1.512
5-year IMPACT FACTOR: 1.599

CiteScore 2018: 1.58

SCImago Journal Rank (SJR) 2018: 0.345
Source Normalized Impact per Paper (SNIP) 2018: 0.684

ICV 2018: 163.25

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Preparation and characterization of activated carbons from biomass material – giant knotweed (Reynoutria sachalinensis)

Hanna Fałtynowicz
  • Corresponding author
  • Division of Chemistry and Technology of Fuels, Faculty of Chemistry, Wrocław University of Technology, Wrocław 50-344, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Kaczmarczyk
  • Division of Chemistry and Technology of Fuels, Faculty of Chemistry, Wrocław University of Technology, Wrocław 50-344, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marek Kułażyński
  • Division of Chemistry and Technology of Fuels, Faculty of Chemistry, Wrocław University of Technology, Wrocław 50-344, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-08 | DOI: https://doi.org/10.1515/chem-2015-0128


Activated carbons from biomass material of giant knotweed Reynoutria sachalinensis (F. Schmidt ex Maxim.) Nakai were obtained. Use of this plant for manufacturing activated carbon has not been studied yet. Therefore, the first activated carbons of giant knotweed origin are described. Both physicochemical (by steam and CO2) and chemical (by KOH) activation methods were applied. Influences of temperature (500, 600, 700 and 800°C), burn-off [10, 25 and 50 wt. % (daf)] and KOH concentration on pores surface area and volume distribution of the obtained activated carbons were explored. Porosity of the elaborated sorbents was determined by benzene and carbon dioxide sorption measurements. Sorbents obtained by steam activation were micro- and mesoporous with surface area and volume of pores increasing with temperature and burn-off to V = 0.351 cm3 g-1 and S = 768 m2 g-1 at 800°C at 50% burn-off. Carbon dioxide activation resulted with notably microporous activated carbons with porous texture parameters also increasing with burn-off to V = 0.286 cm3 g-1 and S = 724 m2 g-1 at 50% burn-off. The highest BET surface area of 2541 m2 g-1 was achieved when chemical (KOH) activation was performed using KOH to char ratio 4:1.

Graphical Abstract

This article offers supplementary material which is provided at the end of the article.

Keywords : biomass; activated carbon; chemical activation; steam activation; carbon dioxide activation; benzene and carbon dioxide sorption; sorption properties


  • [1] Trawczyński J., Kułażyński M., Active carbon monoliths as catalyst supports for scr (selective catalytic reduction) of NOx with ammonia, Coal Science and Technology, 1995, 24, 1803-1806. Google Scholar

  • [2] Lee H.-C., Byamba-Ochir N., Shim W.-G., Balathanigaimani M. S., Moon H., High-performance super capacitors based on activated anthracite with controlled porosity, J. Power Sources, 2015, 275, 668-674. Web of ScienceGoogle Scholar

  • [3] Wu M., Guo Q., Fu G., Preparation and characteristics of medicinal activated carbon powders by CO2 activation of peanut shells, Powder Technology, 2013, 247, 188-196. Web of ScienceGoogle Scholar

  • [4] Sroka Z. J., Kułażyński M., Kaczmarczyk J., Michałowski R., Application of carbon adsorbent to methane storage in fuel tanks of vehicles, Pol. J. Environ. Stud., 2009, 18, 211-215. Google Scholar

  • [5] Dabioch M., Skorek R., Kita A., Janoska P., Pytlakowska K., Zerzucha P. et al., A study on adsorption of metals by activated carbon in a large-scale (municipal) process of surface water purification, Open Chem., 2013, 11, 742-753. Google Scholar

  • [6] Bratek K., Bratek W., Kułażyński M., The utilization of sorbents obtained from miscanthus using steam as the activation agent for wastewaters treatment, Pol. J. Chem. Technol., 2007, 9, 102-105. CrossrefGoogle Scholar

  • [7] Bansal R. C., Goyal M., Activated carbon adsorption, CRC Press, New York, 2005. Google Scholar

  • [8] He X., Li R., Qiu J., Xie K., Ling P., Yu M. et al., Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template, Carbon, 2012, 50, 4911–4921. CrossrefWeb of ScienceGoogle Scholar

  • [9] Zhi M., Yang F., Meng F., Li M., Manivannan A., Wu N., Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires, ACS Sustainable Chem. Eng., 2014, 2, 1592−1598. Google Scholar

  • [10] Tseng R.-L., Wu F.-C., Juang R.-S., Adsorption of CO2 at atmospheric pressure on activated carbons prepared from melamine-modified phenol-formaldehyde resins, Sep. Purif. Technol., 2015, 140, 53-60. Web of ScienceGoogle Scholar

  • [11] Bratek K., Bratek W., Kułażyński M., Carbon adsorbents from waste ion-exchange resin, Carbon, 2002, 40, 2213-2220. CrossrefGoogle Scholar

  • [12] Ali I., Asim M., Khan T. A., Low cost adsorbents for the removal of organic pollutants from wastewater, J. Environ. Manage., 2012, 113, 170-183. Web of ScienceGoogle Scholar

  • [13] Ioannidou O., Zabaniotou A., Agricultural residues as precursors for activated carbon production - a review, Renew. Sust. Energ. Rev. 2007, 11, 1966-2005. CrossrefWeb of ScienceGoogle Scholar

  • [14] Vargas D. P., Giraldo L., Moreno-Piraján J. C., Calorimetric study of activated carbons impregnated with CaCl2, Open Chem., 2015, 13, 683-688. Google Scholar

  • [15] Bratek K., Bratek W., Kaczmarczyk J., Kułażyński M., Activated carbons prepared by corn cobs activation in water purification, Pol. J. Environ. Stud., 2005, 14, 115-118. Google Scholar

  • [16] Nowicki P., Kuszyńska I., Przepiórski J., Pietrzak R., The effect of chemical activation method on properties of activated carbons obtained from pine cones, Cent. Eur. J. Chem., 2013, 11, 78-85. Web of ScienceCrossrefGoogle Scholar

  • [17] Toscano G., Cimino G., New carbon from low cost vegetal precursors: acorn and cypress cone, Cent. Eur. J. Chem.,2013, 11, 2012-2021. Web of ScienceGoogle Scholar

  • [18] Li D., Ma X., Liu X., Yu L., Preparation and characterization of nano-TiO2 loaded bamboo-based activated carbon fibers by H2O activation, BioResources, 2014, 9, 602-612. Google Scholar

  • [19] Zhang Y.-J., Xing Z.-J., Duan Z.-K., Li M., Wang Y., Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste, Appl. Surf. Sci., 2014, 315, 279-286. Web of ScienceGoogle Scholar

  • [20] González P. G., Hernández-Quiroz T., García-González L., The use of experimental design and response surface methodologies for the synthesis of chemically activated carbons produced from bamboo, Fuel Process. Technol., 2014, 127, 133-139. Web of ScienceGoogle Scholar

  • [21] Banerjee S., Chattopadhyaya M. C., Srivastava V., Sharma Y. C., Adsorption studies of methylene blue onto activated saw dust: kinetics, equilibrium, and thermodynamic studies, Environ. Prog. Sustainable Energy, 2014, 33, 790-799. CrossrefWeb of ScienceGoogle Scholar

  • [22] Mohan D., Singh K. P., Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse - an agricultural waste, Water Research, 2002, 36, 2304–2318. CrossrefGoogle Scholar

  • [23] Patteson J. W., Industrial wastes reduction, Environ. Sci. Technol., 1989, 23,1032-1038. CrossrefGoogle Scholar

  • [24] Nowakowski T., Rośliny energetyczne, In: Lisowski A. (Ed.), Technologie zbioru roślin energetycznych, Wydawnictwo SGGW, Warszawa, 2010 (in Polish). Google Scholar

  • [25] Delivering Alien Invasive Species Inventories for Europe (DAISIE) project, http://www.europe-aliens.org/speciesFactsheet.do?speciesId=8170# (access: 12.02.2015). Google Scholar

  • [26] The Nature Conservation Act of 16 April 2004 (in Polish). Google Scholar

  • [27] Regulation of the Minister for the Environment of 9 September 2011 on the List of alien plant and animal species, which if realesed into the environment could threaten native species (in Polish). Google Scholar

  • [28] McBain J. W., Theories of adsorption and the technique of its measurement, Nature, 1926, 117, 550-551. CrossrefGoogle Scholar

  • [29] McBain J. W. , Bakr A. M., A new sorption balance, JACS, 1926, 48, 690-695. CrossrefGoogle Scholar

  • [30] Skoulou V., Zabaniotou A., Investigation of agricultural and animal wastes in Greece and their allocation to potential application for energy production, Renew. Sust. Energ. Rev., 2007, 11, 1698-1719. CrossrefGoogle Scholar

  • [31] Mohamed A. R., Mohammadi M., Darzi G. N., Preparation of carbon molecular sieve from lignocellulosic biomass: a review, Renew. Sust. Energ. Rev., 2010, 14, 1591-1599. CrossrefWeb of ScienceGoogle Scholar

  • [32] Daud W., Ali W., Sulaiman M., Effect of carbonization temperature on the yield and porosity of char produced from palm shell, J. Chem. Technol. Biotechnol., 2001, 76, 1281-1285. CrossrefGoogle Scholar

  • [33] Li W., Yang K., Peng J., Zhang L., Guo S., Xia H., Effects of carbonization temperatures on characteristics of porosity in coconut shell chars and activated carbons derived from carbonized coconut shell chars, Ind. Crops Prod., 2008, 28, 190-198. CrossrefWeb of ScienceGoogle Scholar

  • [34] Arriagada R., Bello G., Garcia R., Rodriguez-Reinoso F., Sepulveda-Escribano A., Carbon molecular sieves from hardwood carbon pellets. The influence of carbonization temperature in gas separation properties, Micropor. Mesopor. Mater., 2005, 81, 161-167. CrossrefGoogle Scholar

  • [35] Molina-Sabio M., Gonzalez M., Rodriguez-Reinoso F., Sepulveda-Escribano A., Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon, Carbon, 1996, 34, 505–509. CrossrefGoogle Scholar

  • [36] Rodriguez-Reinso F., Lopez-Gonzalez J. de D., Berenguer C., Activated carbons from almond shell - I. Preparation and characterization by nitrogen adsorption, Carbon, 1982, 20, 513-518. CrossrefGoogle Scholar

  • [37] Labus K., Gryglewicz S., Machnikowski J., Granular KOH-activated carbons from coal-based cokes and their CO2 adsorption capacity, Fuel, 2014, 118, 9-15. CrossrefWeb of ScienceGoogle Scholar

  • [38] Moreno-Piraján J. C., Giraldo J., Activated carbon from bamboo waste modified with iron and its application in the study of the adsorption of arsenite and arsenate, Cent. Eur. J. Chem., 2013, 11, 160-170. Web of ScienceGoogle Scholar

About the article

Received: 2015-02-13

Accepted: 2015-06-24

Published Online: 2015-09-08

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0128.

Export Citation

© 2015 Hanna Fałtynowicz et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Marta Oleszek, Iwona Kowalska, and Wieslaw Oleszek
Phytochemistry Reviews, 2019, Volume 18, Number 3, Page 893
Aloysius Akaangee Pam
C, 2019, Volume 5, Number 3, Page 43
K.R. Arul Saravanan, N. Prabu, M. Sasidharan, and G. Maduraiveeran
Applied Surface Science, 2019, Volume 489, Page 725
Hanna Fałtynowicz, Paweł Hodurek, Jan Kaczmarczyk, Marek Kułażyński, and Marcin Łukaszewicz
Bioorganic Chemistry, 2019
Katsuya Konno, Yusuke Oike, Yasutaka Ohba, Osamu Sasaki, Yasuyuki Takiguchi, Kaoru Onoe, and Tatsuaki Yamaguchi
Green and Sustainable Chemistry, 2017, Volume 07, Number 04, Page 259
Nor Adilla Rashidi and Suzana Yusup
Chemical Engineering Journal, 2017, Volume 314, Page 277

Comments (0)

Please log in or register to comment.
Log in