Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Chemistry

formerly Central European Journal of Chemistry

1 Issue per year

IMPACT FACTOR 2017: 1.425
5-year IMPACT FACTOR: 1.511

CiteScore 2017: 1.45

SCImago Journal Rank (SJR) 2017: 0.349
Source Normalized Impact per Paper (SNIP) 2017: 0.812

Open Access
See all formats and pricing
More options …
Volume 13, Issue 1


Volume 13 (2015)

Simultaneous determination of 223 pesticides in tobacco by GC with simultaneous electron capture and nitrogen-phosphorous detection and mass spectrometric confirmation

Bozena Lozowicka
  • Corresponding author
  • Plant Protection Institute - National Research Institute, Regional Experimental Station, Laboratory of Pesticide Residues, Chelmonskiego 22, Postal code: 15-195 Bialystok, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ewa Rutkowska
  • Plant Protection Institute - National Research Institute, Regional Experimental Station, Laboratory of Pesticide Residues, Chelmonskiego 22, Postal code: 15-195 Bialystok, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Izabela Hrynko
  • Plant Protection Institute - National Research Institute, Regional Experimental Station, Laboratory of Pesticide Residues, Chelmonskiego 22, Postal code: 15-195 Bialystok, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-09 | DOI: https://doi.org/10.1515/chem-2015-0129


LSE (liquid-solid extraction), MSPD (matrix solid phase dispersion) and QuEChERS (quick, easy, cheap, effective, rugged and safe) extractions followed by GC-μECD/NPD to determine 223 pesticide residues in tobacco simultaneously were developed and compared. The identities of ten model pesticides were confirmed by GC-MS/MS. The type and amount of dispersant (Florisil, silica gel and alumina), sample mass, cleanup adsorbent, and the eluent (hexane, acetone and acetonitrile) were optimized. Linearity, recovery, LOQ, LOD, and matrix effect were compared. Most recoveries were 71−120% (RSD < 18%). LOD and LOQ were much lower than the CORESTA GRLs. The best method was QuEChERS: acetonitrile extraction and dispersive solid-phase extraction using primary-secondary amine and graphitized carbon.

Graphical Abstract

This article offers supplementary material which is provided at the end of the article.

Keywords : tobacco; pesticide residues; gas chromatography


  • [1] Gupta A., Impact of Pesticides on Human and Ecosystem Health: Scientific, Ethical and Policy Issues, Proceedings of National Seminar on toxicity of Chemicals and their Hazards with Special Reference to heavy Metals (St. Edmund’s College, Shillong), 2008, 61-72. Google Scholar

  • [2] Ghelli J., Helio A., Martins-Jumor S.P., Andre S., Development of a fast and cost effective multi-residue method to determine pesticides in tobacco by LC/MS/MS, Technical note, 2009. Google Scholar

  • [3] Clapp W.L., Shelar G.R., The determination of chlorinated pesticides in mainstream smoke, 1972, http://legacy.library.ucsf.edu/tid/cdv69d00. Google Scholar

  • [4] Clark T., Kaußmann E., Römer E., Scheper, G. The fate of imidacloprid in tobacco smoke of cigarettes made from imidacloprid-treated tobacco, Pestic. Sci., 1998, 52, 119-125. Google Scholar

  • [5] Cooperation Centre for Scientific Research Relative to Tobacco, Guide No. 1: The Concept and Implementation of Agrochemical Guidance Residue Levels, 2008, http://www.coresta.org. Google Scholar

  • [6] Łozowicka B., Piotr Kaczynski P., Paritova A., Sarsembayeva N., Kuzembekova G., Abzhalieva A., Alihan K., Pesticide residues in grain from Kazakhstan and potential health risk associated with the exposures to detected pesticides, Food Chem. Toxicol. 2014, 64, 238-248. Google Scholar

  • [7] Łozowicka B., Jankowska M., Rutkowska E. , Hrynko I., Kaczyński P., Miciński J., The evaluation of a fast and simple pesticide multiresidue method in various herbs by gas chromatography, J. Nat. Med., 2014, 68, 95-111. Google Scholar

  • [8] Wang X., Xu G., Wang F., Sun H., Li Y., Iprodione Residues and Dissipation Rates in Tobacco Leaves and Soil, Bull Environ. Contam. Toxicol., 2012, 89, 877-881. Web of ScienceGoogle Scholar

  • [9] Łozowicka B., Jankowska M., Rutkowska E., Hrynko I., Kaczyński P., Metoda oznaczania pozostałości środków ochrony roślin w tytoniu, Determination method of pesticide residues in tobacco, Prog. Plant Prot./Post. Ochr. Roślin, 2011, 51, 721-726, (in Polish). Google Scholar

  • [10] Lee J.M., Park J.W., Jang G.Ch., Hwang K.J., Comparative study of pesticide multi-residue extraction in tobacco for gas chromatography-triple quadrupole mass spectrometry, J. Chromatogr. A, 2008, 1187, 25-33. Web of ScienceGoogle Scholar

  • [11] Haib J., Hofer I., Renaud J.M., Analysis of multiple pesticide residues in tobacco using pressurized liquid extraction, automated solid-phase extraction clean-up and gas chromatography-tandem mass spectrometry, J. Chromatogr. A, 2003, 1020, 173-187. Google Scholar

  • [12] Lee J.M., Jang G.Ch., Hwang K.J., Analysis of agrochemical residues in tobacco using QuECheRS method by GC-MS/MS, J. Korean Soc. Tob. Sci., 2007, 29, 132-139. Google Scholar

  • [13] Zhou T., Xiao X., Li G., Hybrid Field-Assisted Solid–Liquid–Solid Dispersive Extraction for the Determination of Organochlorine Pesticides in Tobacco with Gas Chromatography, Anal. Chem., 2012, 84, 420-427. Web of ScienceGoogle Scholar

  • [14] Liao Q.G., Zhou Y.M., Lu L.G., Wang L.B., Feng X.H., Determination of twelve herbicides in tobacco by a combination of solid-liquid-solid dispersive extraction using multi-walled carbon nanotubes, dispersive liquid-liquid micro-extraction, and detection by GC with triple quadrupole mass spectrometry, Microchim Acta, 2014, 181, 163-169. Web of ScienceGoogle Scholar

  • [15] Zhang L., Liu S., Cui X., Pan C., Zhang A., Chen F., A review of sample preparation methods for the pesticide residue analysis in foods, Cent. Eur. J. Chem., 2012, 10, 900-925. Google Scholar

  • [16] Cai J., Gao Y., Zhu X., Su Q., Matrix solid phase dispersion-Soxhlet simultaneous extraction clean-up for determination of organochlorine pesticide residues in tobacco, Anal. Bioanal. Chem., 2005, 383, 869-874. Google Scholar

  • [17] Chen X., Zhao K., Ge B., Chen Q., Simultaneous Determination of 44 Pesticides in Tobacco by UPLC/MS/MS and a Modified QuEChERS Procedure, J. AOAC Int., 2013, 96, 422-431. Web of ScienceGoogle Scholar

  • [18] Li M., Jin Y., Li H.F., Hashi Y., Ma Y., Lin J.M., Rapid determination of residual pesticides in tobacco by the quick, easy, cheap, effective, rugged, and safe sample pretreatment method coupled with LC-MS, J. Sep. Sci., 2013, 36, 2522-2529. Web of ScienceGoogle Scholar

  • [19] Khana Z.S., Ghoshb R.K., Giramea R., Utturea S.C., Gadgila M., Banerjeea K., et al., Optimization of a sample preparation method for multiresidue analysis of pesticides in tobacco by single and multi-dimensional gas chromatography-mass spectrometry, J. Chromatogr. A, 2014, 1343, 200-206. Web of ScienceGoogle Scholar

  • [20] PPDB, Pesticide Properties DataBase, University of Hertfordshire, http://sitem.herts.ac.uk/aeru/footprint/en. Google Scholar

  • [21] EURACHEM Guide, The Fitness for Purpose of Analytical Methods, A laboratory Guide to Method Validation and Related Topics, 1998, 24-27. Google Scholar

  • [22] European Commission Method Validation and Quality Control Procedures for Pesticide Residues Analysis in food and feed, Document N° SANCO/12495/2011, Brussels, 1 January 2012. Google Scholar

  • [23] Commission Decision (2002/657/EC) of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results, Off. J. Eur. Comm., L221/8, 17 August 2002. Google Scholar

  • [24] Luke M.A., Froberg J.E., Masumoto H.T., Extraction and Cleanup of Organochlorine, Organophosphate, Organonitrogen, Hydrocarbon Pesticides in Produce for Determination by Gas-Liquid Chromatography, J. Assoc. Off. Anal. Chem., 1975, 58, 1020-1026. Google Scholar

  • [25] Luke M.A., Froberg J.E., Dosse G.M., Masumoto H.T., Improved Multiresidue Gas Chromatographic Determination of Organophosphorus, Organonitrogen and Organohalogen Pesticides in Produce, Using Flame Photometric and Electrolytic Conductivity Detectors, J. Assoc. Off. Anal. Chem., 1981, 64, 1187-1195. Google Scholar

  • [26] Zweig G., New and updated methods, Academic Press. Inc., London, UK, 1978. Google Scholar

  • [27] Kadenczki L., Arpad Z., Gardi I., Ambrus A., Gyorfi L., Reese G., Column extraction of residues of several pesticides from fruits and vegetables. A simple multiresidue analysis method, J. Assoc. Off. Ana. Chem., 1992, 75, 53-61. Google Scholar

  • [28] Anastassiades M., Lehotay S.J., Stajnbaher D., Schenck F.J., Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce, J. AOAC Int., 2003, 86, 412-431. Google Scholar

  • [29] Ferrer C., Lozano A., Agüera A., Jiménez A., Fernández A.R., Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables, J. Chromatogr. A, 2011, 1218, 7634-7639. Web of ScienceGoogle Scholar

  • [30] Anastassiades M., Maštovská K., Lehotay S.J., Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides, J. Chromatogr. A, 2003, 1015, 163-184. Google Scholar

  • [31] Cochran J., Evaluation of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the determination of pesticides in tobacco, J. Chromatogr. A, 2008, 1186, 202-210. Web of ScienceGoogle Scholar

  • [32] Ministry of Agriculture and Rural Development, Online database on plant protection products, http://www.minrol.gov.pl/eng/Ministry/Online-database-on-plant-protection products. Google Scholar

About the article

Received: 2014-12-11

Accepted: 2015-07-08

Published Online: 2015-09-09

Citation Information: Open Chemistry, Volume 13, Issue 1, ISSN (Online) 2391-5420, DOI: https://doi.org/10.1515/chem-2015-0129.

Export Citation

© 2015 Bozena Lozowicka et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Elena Hakme, Ana Lozano, Samanta Uclés, and Amadeo R. Fernández-Alba
Analytical and Bioanalytical Chemistry, 2017
Bożena Łozowicka, Ewa Rutkowska, and Magdalena Jankowska
Environmental Science and Pollution Research, 2017, Volume 24, Number 8, Page 7124
Bozena Lozowicka, Gulzhakhan Ilyasova, Piotr Kaczynski, Magdalena Jankowska, Ewa Rutkowska, Izabela Hrynko, Patrycja Mojsak, and Julia Szabunko
Talanta, 2016, Volume 151, Page 51

Comments (0)

Please log in or register to comment.
Log in